
MICROELECTRONIC ENGINEERING RESEARCH CONFERENCE 2001

Speaker Verification in Software and Hardware

Magnus Nilsson, Kuldip K. Paliwal
Griffith University, Signal Processing Laboratory

Abstract - Combined software and hardware research
has been conducted in the Speaker Verification area,
where a Speaker Verification application has been
developed in JAVA, based on Vector Quantizing, VQ,
and Mel Frequency Cepstral Coefficients, MFCC’s.
Extended research has been carried out on the Fourier
Transform, since it is one of the parts demanding most
computational power in the Speaker Verification
system. A complex parallel version of the Radix-4 FFT
algorithm was implemented in hardware using a
Xilinx Viretex-E Field Programmable Gate Array,
FPGA.

I. INTRODUCTION
peaker Verification, utilized by us humans everyday
when talking on the phone or meeting people.

Computerizing such a process involves many different
things. Combined software and hardware research has
been conducted in the Speaker Verification area, where a
Speaker Verification application has been developed in
JAVA. Extended research has been conducted on the
Fourier Transform and an ultra-fast Radix-4 FFT
algorithm has been developed and implemented in
hardware.

II. Speaker Verification
The performance of a speaker verification system [1] is
measured in terms of false acceptance rate (FA%) and
false rejection rate (FR%):

%100*

%100*









=







=

T

r

T

A

C

C
FR

I

I
FA

 (1)

Where IA is the number of imposter classified as true
speakers, IT is the total number of speakers, CR is the
number of true speakers classified as imposters, CT is the
total number of speakers. To calculate the total error of a
verification system, TE, the false acceptance rate is added
to the false rejection rate giving

FRFATE += (2)

III. Feature Extraction and Training
Our speaker verification system is based on Vector
Quantizing, VQ, and Mel Frequency Cepstral Coef-
ficients, MFCC’s.

The speaker verification system is divided into two parts,
a training part and a testing part. To be able to verify a
user, the system first has to be trained for this user.
For the training process, a speaker is asked to speak for
approximately four seconds into a microphone. The
speech is sampled at a sampling rate (Fs) of 8000Hz, and
divided into frames of 240 samples with an overlapping
of 50%.

For each of these frames, zeros are added at the end so
that the frame now is 1024 samples, 240 of speech and
the rest zeros. This process is called zero padding and is
made to give a higher resolution in the next process, the
Fourier Transform. The frame is passed throw a Radix-4
FFT and the square of the magnitude is taken to obtain the
power spectrum of the speech frame.

After this the frame is filtered in the frequency domain
using a bank of non-uniform spaced filters. The human
brain is using the same technique, and it has been showed
that this technique is quite effective for speaker
verification [2]. 19 Mel scale spaced triangular filter
banks are utilized.

Figure 1. Mel spaced triangular filters

The power from each filter bank is summarized and is
expressed in logarithmic scale.

The discrete cosine transform, DCT, is applied to these
values, since the values are highly correlated, and the
Cepstral coefficients are calculated [3].

S

MICROELECTRONIC ENGINEERING RESEARCH CONFERENCE 2001

()

1,,1

2

1
cos

1
)(

1

−=












 −= ∑

=

Filters

N

l FiltersFilters

Ni

N
lilmfb

N
imfcc

Filters π

(3)

The first MFCC value reflects the average log energy in
the speech frame and is discarded [3]. To achieve some
sort of normalization of the MFCC’s, a weighting array
is applied to the values. This has been showed to improve
the verification result [4]. This process is applied to every
frame, giving approximately 320 frames for 4 seconds of
speech at a sampling rate of 8000Hz.

When this is completed, to obtain a fast system, only 10%
of the frames are saved for later comparison. To obtain
this a “compression like” algorithm is utilized, the LBG
algorithm. This algorithm will calculate 32 mean values
out of the 320 starting values. Linde, Buzo and Gray
developed the algorithm in 1980 [5].

When this is completed, a codebook for the user has been
developed and the second part of the speaker verification
system can take place. The verification process.

IV. Verification and JAVA
In this process, the user is asked to speak into the
microphone for approximately three seconds. Out of this
speech, 160 speech frames are extracted. A role of thumb
is to use approximately 10 times as many speech entry
frames as you want in your codebook for the training
process, and for the verification process, approximately
five times as many speech frames as entries in your
codebook.

The same process as described above is conducted for the
verification frames, except from the making of the
codebook.

When 160 feature vectors are extracted from the speech,
the Euclidian distance is calculated.

∑ ∑
−

= =
≤≤ −=

−

1

0 0
0)()(min)(

1

Frames

Entries

N

i

Entries

k
jiNj kSkXkDist

(4)

Where S is codebook entries and X is the feature vectors
from the verification process. The distance for all
codebook entries are summarized. A ratio is calculated
using 10 cohort speakers, i.e. the same Euclidian distance
is calculated and the mean is calculated.

Considering a predefined threshold level, the user is
considered to be a true speaker or an imposter.





≥
<

=
thresholderror

thresholderror
decision VVFalse

VVTrue
V

,

,

The algorithms were tested on an Fs = 8kHz, 16 bits,
noise version of the speech database TIMIT. 100 persons
were used resulting in four precent false rejections and
zero precent false acceptances.

Figure 2. Error ratio from simulation

I.e. this will give us a total error rate, TE = 0 + 4 = 4%

The threshold level in this experiment showed to be
appropriate even for the live system.

The live system developed in JAVA is an application, i.e.
it cannot be executed in a web browser. This due to many
problems with hardware access from within a web
browser. When running an application these restrictions
are not present.

V. Hardware implementation
The process taking most computation power in our
speaker verification system is the Fourier Transform. This
problem has been considered and further research has
been conducted in this area. A Radix-4 Fast Fourier
Transform algorithm was developed and implemented in
hardware using a field programmable gate array, FPGA.

By further developing the Radix-2 algorithm, also known
as the Cooley-Tukey algorithm[6], and using a base of 4
instead of 2, we will get a more complex algorithm but
with less need of computation power. As we will
understand, we will get the new constrain where the
number of data points N in the DFT has to be the power
of 4 (i.e. N = 4x). By dividing your data sequence into
four subsequence:

)}1(),...,7(),3({)}4({

)}2(),...,6(),2({)}4({

)}3(),...,5(),1({)}4({

)}4(),...,4(),0({)}4({

−=
−=
−=
−=

Nyyyny

Nyyyny

Nyyyny

Nyyyny

MICROELECTRONIC ENGINEERING RESEARCH CONFERENCE 2001

And by using the approach described in [7] and by
applying:

3,2,1,0

)],([),(
3

0
4

=

= ∑
=

p

WqlFWqpX
l

lqlq
N

(6)

Where F(l,q) is given by:

1
4

,...,2,1,0

3,2,1,0

),(),(
1

4

0 4

−=

=

= ∑
−

=

N
q

l

WmlxqlF

N

m

mq
N

(7)

And:

)
4

(),(

)4(),(

qp
N

XqpX

lmxmlx

+=

+=
(8)

The four N/4-points DFT’s obtained from equation 7 are
combined according to equation 6 and can be combined to
yield the N-point DFT, as described in [7]:







































−−
−−

−−
=



















),3(

),2(

),1(

),0(

11

1111

11

1111

),3(

),2(

),1(

),0(

3

2

1

0

qFW

qFW

qFW

qFW

jj

jj

qX

qX

qX

qX

N

N

N

N

 (9)

We also should note that W0

N = 1, which will give us
three complex multiplications and 12 complex additions
per Radix-4 butterfly. As the Radix-4 algorithm consist of
v steps, (log(N)/log(4)) where each step involves N/4
number of butterflies we will get 3*v*N/4 = (3N/8)log2N
number of complex multiplications and (3N/2)log2N
complex additions. If compared with the computational
power used by the Radix-2 algorithm, we will find that
we have a computer gain of 25% regarding the complex
multiplications, but that the number of complex additions
increases by 50%. In a hardware implementation we
always have to consider the multiplications since they are
the most area consuming.

The matrix in equation 9 is better described with a Radix-
4 butterfly:

Figure 3. Radix-4 Butterfly, also referred to as Dragonfly

Classical implementation of the FFT algorithm, with a
processor or in hardware usually requires a sequential
algorithm, in some cases recursive, due to space and
memory requirements. This slows down the execution
time. By utilizing modern programmable circuits, like a
FPGA, a parallel approach to the realization of FFT is
available.

A complex parallel version of the Radix-4 FFT algorithm
was implemented in a Xilinx Viretex-E FPGA. A
benchmark test, showed that this parallel approach was
much faster than the fastest DSP’s on the market [8]. Our
construction executes a 256 points FFT in 860 ns at a
clock frequency of 55 MHz, compared to for example the
Pentium III, which executes a 256 points FFT in 1 us at a
clock frequency of 1130 MHz.

Figure 4. 256 points benchmark results

This shows that a parallel approach to the FFT algorithm
is appropriate and possible, hence it will, due to a slower
clock speed, have a lower power consumption, which is
very useful for example portable applications.

MICROELECTRONIC ENGINEERING RESEARCH CONFERENCE 2001

V. Conclusion
A VQ and MFCC approach to Speaker Verification has
been developed in JAVA software. The algorithms has
been implemented as an application instead of a web
based applet, due to problems to access hardware from
within a web browser. Further studies has been conducted
on the part of the speaker verification systems most
computer power demanding part, the Fourier Transform.
A parallel complex Radix-4 FFT algorithm has been
developed and implemented in hardware using a Xilinx
Virtex-E FPGA, and a benchmark test showed that a
parallel approach to implementing the Fast Fourier
Transform is appropriate and interesting due to lower
power consumption and lower clock speed, interesting
when for instance dealing with portable equipment.

VI. References
[1] Sanderson, C., “Joint Cohort Normalization in a Multi-
Feature Speaker Verification System”, submitted to The 10th
IEEE International Conference on Fuzzy Systems,
Melbourne, Australia, 2-5 December 2001
[2] Reynolds, D., “Speaker Identification n Verification Using
Gaussian Mixture Speaker Models”, Speech Communication 17,
1995.
[3] Reynolds, D., “A Gaussian Mixture Model Approach to
Text-Independent Speaker Identification”, MIT, Technical
Report 967, 1995
[4] Soong, F. Rosenberg, A.E., “On the use of Instantaneous and
Transitional Spectral Information in Speaker Recognition”,
IEEE Trans. Acoustics, Speech, and Signal Processing, Vol 36,
No. 6, June 1998
[5] Y. Linde, A. Buzo and R. M. Gray, “An algorithm for vector
quantizer design”, IEEE Trans. on Comm., Vol. COM-28, pp.
84-95, Jan. 1980
[6] Cooley, J.W., Tukey, J.W., “An algorithm for the machine
calculation of complex Fourier series”, Math. Comp. 19, pp.
297-301, 1965
[7] Proakis, J. G., “Digital Signal Processing, Principles,
algorithms and applications”, Prentice Hall, Inc., 1996, ISBN:
0-13-394289-9
[8] Eyre. J., “The Digital Signal Processing Derby”, IEEE
Spectrum, June 2001, pp. 62-68

