
Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

REPORT 1(52)

EMWMSNN (Magnus Nilsson)

EMW/FX/DC (Anders Wanner) 2001-02-12 A1

FX/D-2001:007
FFT, REALIZATION AND IMPLEMENTATION IN FPGA

Griffith University/Ericsson Microwave System AB 2000/2001

by

Magnus Nilsson

Supervisor, EMW: Rune Olsson

Supervisor, GU: Prof. Kuldip K. Paliwal

Signal Processing Laboratory, School of Microelectronic Engineering, Griffith University

Brisbane/Gothenburg 2000/2001

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cos(2*pi*4.5/16*t)+i*sin(2*pi*4.5/16*t)
/proj/fmd/fft/report02.fm

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

2(52)
Abstract

Ericsson Microwave Systems develops radar systems for military and civilian
applications. In military environments high radar resolution and long range
are desired, thus high demands must be met by the generated and
transmitted radar signal.

In this report the design of a parallel Radix-4 Fast Fourier Transform
algorithm is described. A theoretical review regarding Fourier theory and
Fast Fourier Transform (Radix-2 and Radix-4) is done.

A complex parallel Radix-4 algorithm is simulated, implemented and realized
in hardware using VHDL and a Xilinx Virtex-E 1000 FPGA circuit.

The VHDL code was simulated and synthesized in Ease and Synplify
environment. The design was verified and the output was identical with the
Matlab and VHDL simulations, proving speed improvements due to a parallel
approach.

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

3(52)
Preface

This thesis is a part of my education towards a Master degree in Computer
and Information Engineering at Griffith University, Brisbane, Australia.
Project 1,2 and 3. MEE7097,MEE7098 and MEE7099.

The work has been done at Ericsson Microwave System AB in Mölndal
Sweden, at the department FX/D

I would like to thank the following people who has been of great help to me
during my work.

My supervisor Rune Olsson, EMW.

My manager Håkan Olsson/Anders Wanner, EMW.

Prof. Kuldip K. Paliwal, supervisor GU.

Daniel Wallström, EMW, for help with VHDL.

Dennis Eriksson, EMW, for help with Logical Analyser/Pattern generator.

Nils Dagås and Gabriel Gitye, EMW, for help with Matlab.

I would also like to thank the remaining staff at EMW/FX and GU who have
been helpful to me.

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

4(52)
Contents Page

1 Introduction . 6
1.1 Background . 6
1.2 Task . 6
1.3 Technical function . 6
2 Jean-Baptiste-Joseph Fourier . 7
3 The Fourier Transform . 8
4 The Discrete Fourier Transform . 13
5 Development of the Fast Fourier Transform. 15
5.1 Theory of the Fast Fourier Transform 15
5.2 History of the Fast Fourier Transform 16
6 The Radix - 2 Algorithm. 17

Fig.1. : FFT-Butterfly . 20
Fig.2. : Radix-2 DFT structure . 23
Fig.3. : Radix-2 vs. Direct calculation in flops 23
Fig.4. : Radix-2 algorithm comp. with MATLAB function FFT . 24

7 The Radix-4 Algorithm. 25
Fig.5. : Radix-4 Butterfly, also referred to as Dragonfly 26
Fig.6. : Radix-4 FFT algorithm compared with Matlab FFT . . . 29

8 Implementation and Realization in hardware. 30
8.1 FPGA. 30

Fig.7. : CLB, Configurable logic block. Courtesy of Xilinx Inc. . 30
8.2 Complex FFT . 31

Fig.8. : Construction configuration . 31
8.3 Bit-length . 32

Fig.9. : Radix-4 FFT, 12-bit length of samples 32
Fig.10. : Radix-4 FFT, 14-bit length of samples 32
Fig.11. : Radix-4 FFT, 16-bit length of samples 32

8.4 Radix-4 FFT algorithm, N = 64 . 33
Fig.12. : Radix-4 FFT, N = 64 . 33
Fig.13. : First FFT construction vs. Matlab FFT. 35
Fig.14. : Timing diagram for Radix-4 FFT, shared multiplier . . 37

8.5 Radix-4 FFT algorithm, N = 16 . 38
Fig.15. : Input signal X1 and X2. 38
Fig.16. : Input signal X3 and X4. 38
Fig.17. : Radix-4 N = 16. 39
Fig.18. : Timing diagram for Radix-4 FFT length 16, 16 bits . . 39
Fig.19. : Absolute value block . 40

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

5(52)
9 Verification and Results. .42
9.1 Test pattern .42
9.2 Matlab verification .43

Fig.20. : Output graph signal X1, absolute = 143
Fig.21. : Output graph signal X2, absolute = 143
Fig.22. : Output graph signal X3, absolute = 143
Fig.23. : Output graph signal X4, absolute = 143
Fig.24. : Output complex and absolute, signal 1 vs. Matlab . . .44
Fig.25. : Output complex and absolute, signal 2 vs. Matlab . . .44
Fig.26. : Output complex and absolute, signal 3 vs. Matlab . . .45
Fig.27. : Output complex and absolute, signal 4 vs. Matlab . . .45

10 Conclusion .46
11 Ideas for further studies .46
12 References .47

Appendix A1 Ease block structure of Radix-4 FFT, N = 64
Appendix-A2 . . . Ease block structure of Radix-4 FFT, N = 64, shared mult
Appendix A3 Ease block structure of Radix-4 FFT, N = 16
Appendix B . Matlab code
Appendix C . Output listing

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

6(52)
1 INTRODUCTION

1.1 BACKGROUND

To implement the DFT (FFT) in hardware (real time system) required
expensive solution often with ASIC (Application Specific Integrated Circuit).
With the latest generation of FPGA (Field Programmable Gate Arrays) it is
possible to implement very large amounts of logic in a single integrated
circuit.

A manufacturer of FPGA named XILINX now has a drop-in module for their
FPGAs which can execute a 1024-points FFT. It is interesting to evaluate and
develop such a DFT or similar.

1.2 TASK

To study, implement and evaluate the DFT (Discrete Fourier Transform) in
FPGA or similar.

1.3 TECHNICAL FUNCTION

The DFT shall collect data, execute a DFT or IDFT and output the data. The
implementation shall be optimized on execution time, size (area) and cost.

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

7(52)
2 JEAN-BAPTISTE-JOSEPH FOURIER

The 21:st of March 1768, Jean-Baptiste-Joseph Fourier was born. He was
born in poor circumstances in the small village of Auxerre, France.

Jean-Baptiste-Joseph Fourier introduced the idea that an arbitrary function,
even a function defined by different analytic expressions in adjacent
segments of its range (such as a staircase waveform) could nevertheless be
represented by a single analytic expression.

Fourier’s ideas encountered resistance at the time but has proven to be a
central theorem to many of the later developments in mathematics, science
and also engineering. As we all know, it is at the heart of the electrical
curriculum today.

Fourier came across the idea in the connection with the problem of flow of
heat in solid bodies, including the heat from the earth.

We have learned that Fourier was obsessed with heat, keeping his room
really hot, uncomfortably hot for visitors, this when even wearing a heavy
coat himself. Some has traced this obsession back to Egypt where he went
1798 with Napoleon on an expedition to civilize the country. By this time
Fourier worked with his theories parallel to his official duties as a secretary
of the Institut d’Egypte. At the time in Egypt, Fourier came in contact with the
English Physisist Thomas Young (1773-7829), father of linearity, with whom
he discussed his ideas and worked together on, among other things, the
Rosetta Stone.

After returning back to Paris, Fourier had by 1807, despite official duties,
completed his theory of heat conduction, which depended on the essential
idea of analysing the temperature distribution into spatially sinusoidal
componets. He was very criticized for his theory among the french scientists,
among them where Biot and Poisson. Even though he was criticized for his
theory he received a mathematic prize in 1811 for his heat theory.

The publication of his writing report "Théorie analytique de la chaleur" (The
analytical theory of heat) in 1815 was also met with some criticism and this
might be seen as an indication of the deep uneasiness about Fourier
analysis that was felt by the great mathematicians of that day.

Jean-Baptiste-Joseph Fourier died in Paris the 16:th of May 1830. He never
got married.

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

8(52)
3 THE FOURIER TRANSFORM

One of todays principal analysis tool in many of todays scientific challenges
is the Fourier Transform. Maybe the most known application of this
mathematical technique is the analysis of linear time-invariant system. As
this might be the most well known application, the Fourier Transform is
essentially a universal problem solving technique. Its importance is based on
the fundamental property that one can examine a particular relationship from
an entirely different viewpoint. Simultaneous visualization of a function and
its Fourier Transform is often the key to successful problem solving.

If we define a signal:

(EQ 1)

A transient signals spectrum is characterised by the fact that it is continuous,
this means that it holds infinite numbers of frequency components, although
usually they are in a finite interval.

y t()
t ∞±→
lim 0=

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7
Transient signal

n

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

9(52)
Mathematically one can define a signal, that vary periodically with time, to be
a sum of discrete frequency components, where a simple relationship exists
between the frequency components. This can be defined as a formula:

(EQ 2)

where

If we look back on our transient signal above, the mathematical consequence
will be that the coefficients will be continues functions of the phase w.
Equation 3 becomes:

(EQ 3)

y t() 1
2
--- An nω0t() Bn nω0t()sin+cos{ }

n 1=

∞

∑+=

ω0
2π
T
------=

T Periodicaltime=

y t() A ω() ωt() B ω() ωt()sin+cos
0

∞

∫=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

10(52)
If we compare this equation with equation 2 we will see that the constant
A0/2 has disappeared, this though A0/2 represents the time mean value of
the signal and though it is a transient, the time mean value is zero. The
Fourier coefficients A(w) and B(w) is defined by the Fourier integrals:

(EQ 4)

(EQ 5)

where

When one wants to calculate the Fourier coefficients in the general case for
the signal f(t), one should facilitate the calculations by introduce complex
notation.The starting point for complex notation of the Fourier Transform is
based on the formulas by Euler which gives a relation between the complex
number j and the trigonometrical functions sine and cosine:

(EQ 6)

(EQ 7)

A ω() 2 y t() ωtcos td

∞–

∞

∫=

B ω() 2 y t() ωsin t td

∞–

∞

∫=

ω 0>

αcos e
jα

e
j– α

+
2

------------------------=

αsin e
jα

e
j– α

–
2 j

------------------------=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

11(52)
The equations 2, 6 and 7 will give us:

(EQ 8)

If we define Y(w):

Equation 9a and 9b (EQ 9)

Then the equation 8 can be simplified by making the integration over the real
area:

(EQ 10)

y t() A ω()e
jωt

e
jωt–

+
2

---------------------------- 
  B ω()e

jωt
e

jωt–
–
2 j

--------------------------- 
 + ωd

0

∞

∫=

y t() A
e

jωt
e

jωt–
+
2

---------------------------- jB
e

jωt
e

jωt–
–
2

---------------------------+ 
  ωd

0

∞

∫=

y t() 1
2
--- A j– B()ejωt 1

2
--- A jB+()e j– ωt

+ 
  ωd

0

∞

∫=

Y ω() 1
2
--- A ω() j– B ω()()=

Y ω–() 1
2
--- A ω() jB ω()+()=

y t() Y ω()ejωt

∞–

∞

∫=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

12(52)
This will then give us, by looking at equation 4 and 5:

(EQ 11)

We will then define Y(w) as the Fourier Transform of y(t) and equation 10 as
the Inverse Fourier Transform.

Y ω() y t() ωtcos t j y t() ωsin t td

∞–

∞

∫–d

∞–

∞

∫=

Y ω() y t() ωt j ωsin t–cos() td

∞–

∞

∫=

Y ω() y t()e jωt–

∞–

∞

∫=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

13(52)
4 THE DISCRETE FOURIER TRANSFORM

When sampling an arbitrary analog signal the sampled signal can be
expressed as:

(EQ 12)

Where

According to the Nyquist theorem.

The function described above is a sum of time delayed delta functions, each
of them with the height y(nTS). The Fourier Transform for all of those
functions equals the Fourier Transform for the undelayed function ie.

multiplied with respectively time delay factor:

(EQ 13)

Since f = w/2pi is a discrete variable when we deal with a sampled signal and
only adopt the discrete values:

y t() y 0()δ 0() y TS()δ t TS–() y 2TS()δ t 2TS–() … y N 1–()TS()δ t N 1–()TS–()+ + + +=

1
TS
------ 2 f max≥

F y nTS()δ 0(){ } y nTS()F δ 0(){ }=

Y ω() y 0() y TS()e
jωTS–

… y N 1–()TS()e
jω N 1–()TS–

+ + +=

Y ω() y nTS()e
jωnTS–

n 0=

N 1–

∑=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

14(52)
(EQ 14)

Where k = 0,1,2,.....,N-1

Equation 13 becomes:

(EQ 15)

Once again k = 0,1,2,.....,N-1

If we simplify the equation:

(EQ 16)

We will get the final expression for the Fourier Transform:

(EQ 17)

k = 0,1,2,...,N-1

The factor WN is called the Twiddle Factor.

0
1

NTs

2
NTs
---------- … N 1–

NTs
-------------, , , , k

NTs
----------=

Y
2πk
NTs
---------- 

  y nTS()e
jn

2πk
NTs
----------TS–

n 0=

N 1–

∑ y nTS() e
j
2π
N
------–

 
 
 

nk

n 0=

N 1–

∑= =

WN e
j
2π
N
------–

=

Y k() y n()WN
nk

n 0=

N 1–

∑=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

15(52)
5 DEVELOPMENT OF THE FAST FOURIER TRANSFORM

5.1 THEORY OF THE FAST FOURIER TRANSFORM

If we consider the equation 17:

and we consider the amount of additions and multiplications needed for
computing the algorithm. For instance, let us consider the case when N = 4

Or simplified in the compact form:

(EQ 18)

If we then consider the twiddle factor and y(k) we will in the worst case have
two complex numbers. This fact will give us N2 complex multiplications and
(N)(N-1) complex additions. Suppose that we have a microprocessor that
can do an addition or a multiplication in 1 micro second and that this
processor should compute a DFT on a 1 kbyte set of samples. If we have N2

complex multiplications and (N)(N-1) complex additions ~ 2N2 additions and
multiplications: 2 x 10242 x 1 micro second = 2,1 second. This without taking
into consideration the fact that the processor has to update pointers an so
on. If we want the analyse to be made in real time we will have to have a
distance between the samples that exceeds 2,1 second:

Y k() y n()WN
nk

n 0=

N 1–

∑=

k 0 1 2 … N 1–, , , ,=

Y 0() y0W
0

y1W
0

y2W
0

y3W
0

+ + +=

Y 1() y0W
0

y1W
1

y2W
2

y3W
3

+ + +=

Y 2() y0W
0

y1W
2

y2W
4

y3W
6

+ + +=

Y 3() y0W
0

y1W
3

y2W
6

y3W
9

+ + +=

Y n() W
nk

y k()=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

16(52)
Which gives us:

as the maximum sampling frequency. By taking the Nyquist theorem in
respect, we can not sample a signal that holds a frequency component that
exceeds half the maximum sampling frequency = 488Hz/2 = 244Hz.

There are two obvious ways to improve and increase the bandwidth; a faster
processor or optimizing the algorithm.

5.2 HISTORY OF THE FAST FOURIER TRANSFORM

In the beginning of the 1960’s, during a meeting of the President’s Scientific
Advisory Commitee, Richard L. Garwin found out that John W. Tukey was
writing about the Fourier Transform. Garwin was in his own research in a
desperate need for a fast way to compute the Fourier Transform. When
questioned, Tukey outlined to Garwin essentially what has led to the famous
Cooley-Tukey algorithm.

To get some programming technique, Tukey went to IBM Research in
Yorktown Heights and meet there James W Cooley, who quickly worked out
a computer program for this algorithm. After a while, request for copies and
a write-up began accumulating, and also Cooley was asked to write a paper
on the algorithm which in 1965 became the famous paper "An algorithm for
the machine calculation of complex Fourier series", that he published
together with Tukey.

When publishing this paper, reports of other people using the same
technique became known, but the original idea usually ascribe to Runge and
König.

The Cooley - Tukey algorithm is also called the Radix - 2 algorithm, due to its
signal splitting.

2.1
1024
------------ 2.05ms=

1
2.05
---------- 488Hz=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

17(52)
6 THE RADIX - 2 ALGORITHM

Once again consider equation 17:

and we want to analyse the samples:

If we consider the possibility to split the samples into odd and even samples:

Doing the DFT for those two sequences will give:

(EQ 19)

By extracting and simplifying the twiddle factor we are able to simplify even
further:

(EQ 20)

Y k() y n()WN
nk

n 0=

N 1–

∑=

k 0 1 2 … N 1–, , , ,=

y n(){ } y 0() y 1() y 2() … y N 1–(), ,,,{ }=

y 2n(){ } y 0() y 2() y 4()… y N 2–(), ,,{ }=

y 2n 1+(){ } y 1() y 3() y 5() … y N 1–(), ,,,{ }=

Y k() y 2n()WN
2nk

y 2n 1+()WN
2n 1+()k

n 0=

N
2
---- 1–

∑+
n 0=

N
2
---- 1–

∑=

Y k() y 2n()WN
2nk

WN
k

y 2n 1+()WN
2nk

n 0=

N
2
---- 1–

∑+
n 0=

N
2
---- 1–

∑=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

18(52)
(EQ 21)

(EQ 22)

By comparing this equation with equation 17 we will find that this by definition
are two DFT’s with length N/2.

(EQ 23)

Where D and E represents the sums from equation 22. The computation gain
by doing this will be: (as the multiplications in an ordinary DFT = N2)

This number should be adjusted a bit though the twiddle factor should be
multiplied with the odd sum, but this is of a first order of N.

If we study equation 23, we will find that k goes from 0 to N-1 but that D and
E represents DFT of N/2. Generally for a DFT of length N is that it is
periodical in k with N. This leads to that D and E in equation 23 is periodical
with N/2.

W
2

e
j
2π
N
------–

 
 
 

2

e
j
2π
N
------– 2

e
j

2π
N 2⁄-----------–

WN 2⁄= = = =

Y k() y 2n()WN 2⁄
nk

WN
k

y 2n 1+()WN 2⁄
nk

n 0=

N
2
---- 1–

∑+
n 0=

N
2
---- 1–

∑=

Y k() D k() WN
k

E k()+=

k 0 1 2 … N 1–, , , ,=

N
2
---- 

  2 N
2
---- 

  2
+ N

4

2 N
4

2
+ N

2

2
= =

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

19(52)
(EQ 24)

(EQ 25)

Calculating the DFT:

(EQ 26)

By symmetrically, the twiddle factor can be expressed as:

D k
N
2
----+ 

  D k()=

E k
N
2
----+ 

  E k()=

Y 0() D 0() WN
0

E 0()×+=

Y 1() D 1() WN
1

E 1()×+=

Y 2() D 2() WN
2

E 2()×+=

…
…

Y
N
2
---- 1– 

  D
N
2
---- 1– 

  WN

N
2
---- 1–

E
N
2
---- 1– 

 ×+=

Y
N
2
---- 

  D
N
2
---- 

  WN

N
2

E
N
2
---- 

 ×+ D 0() WN

N
2

E 0()×+= =

Y
N
2
---- 1+ 

  D
N
2
---- 1+ 

  WN

N
2
---- 1–

E
N
2
---- 1+ 

 ×+ D 1() WN

N
2
---- 1+

E 1()×+= =

…
…

Y N 1–() D N 1–() WN
N 1–

E N 1–()×+ D
N
2
---- 1– 

  WN
N 1–

E
N
2
---- 1– 

 ×+= =

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

20(52)
(EQ 27)

Which gives us:

(EQ 28)

By looking into equation 28 we will find one elementary building-block, the so
called FFT-Butterfly.

Fig.1. FFT-Butterfly

WN

k
N
2
----+

WN
k

–=

Y 0() D 0() WN
0

E 0()×+=

Y 1() D 1() WN
1

E 1()×+=

…

Y
N
2
---- 1– 

  D
N
2
---- 1– 

  WN

N
2
---- 1–

E
N
2
---- 1– 

 ×+=

Y
N
2
---- 

  D 0() WN
0

E 0()×–=

Y
N
2
---- 1+ 

  D 1() WN
1

E 1()×–=

…
…

Y N 1–() D
N
2
---- 1– 

  W– N

N
2
---- 1–

E
N
2
---- 1– 

 ×=

Y(k)

Y(k+N/2)

D(k)

E(k)

WN
K

-WN
K

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

21(52)
Which gives the equations:

(EQ 29)

(EQ 30)

Since dividing the sequences into smaller building blocks reduce the amount
of multiplications, we will continue to divide the sequences into new blocks.

If we start with equation 22 and divide the sum into four new sums:

(EQ 31)

Y k() D k() WN
k

E k()×+=

Y k() D k() W– N
k

E k()×=

Y k() y 4n()WN 2⁄
2nk

y 4n 2+()WN 2⁄
2n 1+()k

+
n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑=

WN
k

y 4n 1+()WN 2⁄
2nk

y 4n 3+()WN 2⁄
2n 1+()k

n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑
 
 
 
 
 

=

y 4n()WN 2⁄
2nk

WN 2⁄
k

y 4n 2+()WN 2⁄
2nk

+
n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑

WN
k

y 4n 1+()WN 2⁄
2nk

WN 2⁄
k

y 4n 3+()WN 2⁄
2nk

n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑
 
 
 
 
 

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

22(52)
And since

(EQ 32)

And by using equation 21 backwards

(EQ 33)

And if we continue to divide into smaller sums until we only have N/2 2-points
DFT’s we will get the structure described below, the constrain though is that
the length N should be a power of two. The example below shows the
structure for N = 8.

WN 2⁄
2

WN 4⁄=

Y k() y 4n()WN 4⁄
nk

WN 2⁄
k

y 4n 2+()WN 4⁄
nk

+
n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑=

WN
k

y 4n 1+()WN 4⁄
nk

WN 2⁄
k

y 4n 3+()WN 4⁄
nk

n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑
 
 
 
 
 

WN 2⁄
k

WN
2k

=

Y k() y 4n()WN 4⁄
nk

WN
2k

y 4n 2+()WN 4⁄
nk

+
n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑=

WN
k

y 4n 1+()WN 4⁄
nk

WN
2k

y 4n 3+()WN 4⁄
nk

n 0=

N
4
---- 1–

∑+
n 0=

N
4
---- 1–

∑
 
 
 
 
 

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

23(52)
Fig.2. Radix-2 DFT structure

When computing a DFT using a Radix-2 algorithm for the case when N = 2x

the decimation into smaller sums can be done x = log2N times, and this will
give a total number of complex multiplications = (N/2)log2N and Nlog2N
complex additions. The gain when comparing with a direct calculation is
enormous as shown in the figure below:

Fig.3. Radix-2 vs. Direct calculation in flops

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

W8
0

W8
2

W8
2

W8
0

W8
0

W8
1

W8
2

W8
3

Stage 1 Stage 2 Stage 3
x(0) X(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(3)

X(2)

X(1)

X(6)

X(5)

X(4)

X(7)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
7

N

N
um

be
r

of
 fl

op
s

Radix−2 vs. Direct Calculation in flops

Radix−2
Direct Calculation

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

24(52)
Part of radix-2 Matlab algorithm.

%%
% Initialize variables.
t = 1:1:1024;
x = sin(2*pi*0.35*t)+sin(2*pi*0.25*t);
N = length(x);
b = bin2dec(fliplr(dec2bin(0:1:length(x)-1)))+1;
MC = x(b); % Make in bit reversed order
alfa = N/2;
beta = 1;
%%
% Calculate Twiddle factor
for n = 1:N/2
 W(n) = exp(-j*2*pi*(n-1)/N);
 W_r(n) = cos(2*pi*(n-1)/N);
 W_i(n) = -sin(2*pi*(n-1)/N);
end
%%
% Calculate FFT using inplace non-recursive DIT FFT, radix-2
for h = 1:(log(N)/log(2))
 b = 2^(h-1);
 a = 1;
 aO = 1;
 for d = 1:alfa
 c = 1;
 for e = 1:beta
 a+b;
 temp1 = W(c)*MC(a+b);
 temp2 = MC(a);
 MC(a) = MC(a) + temp1;
 MC(a+b) = temp2 - temp1;
 a = a + 1;
 c = c + alfa;
 end
 a = aO + 2^(h);
 aO = a;
 end
 alfa = alfa/2;
 beta = beta*2;
end

Fig.4. Radix-2 algorithm comp. with MATLAB function FFT

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

Radix−2 FFT algorithm

N

y(x) = sin(2*pi*0.35*t)+sin(2*pi*0.25*t)

0 50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

500

600

MATLAB FFT algorithm

N

y(x) = sin(2*pi*0.35*t)+sin(2*pi*0.25*t)

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

25(52)
7 THE RADIX-4 ALGORITHM

By developing the Radix-2 algorithm even further and using the base 4
instead we will get the a more complex algorithm but with less computation
power. As we will understand, we will get the new constrain where the
number of data points N in the DFT has to be the power of 4 (i.e. N = 4x). By
doing in the same way as we did with the Radix-2 algorithm we divide the
data sequence into four subsequence

By using the approach described in [8] and by applying:

(EQ 34)

where F(l,q) is given by:

(EQ 35)

And where:

(EQ 36)

y 4n(){ } y 0() y 4() y 8() … y N 4–(), ,,,{ }=

y 4n 1+(){ } y 1() y 5() y 9() … y N 3–(), ,,,{ }=

y 4n 2+(){ } y 2() y 6() y 10() … y N 2–(), ,,,{ }=

y 4n 3+(){ } y 3() y 7() y 11() … y N 1–(), ,,,{ }=

X p q,() WN
lq

F l q,()[]W4
lp

l 0=

3

∑=

p 0 1 2 3, , ,=

F l q,() x l m,()WN
4

mq

m 0=

N
4
---- 1– 

 

∑=

l 0 1 2 3, , ,=

q 0 1 2 … N
4
---- 1–, , , ,=

x l m,() x 4m l+()=

X p q,() X
N
4
---- p q+ 

 =

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

26(52)
And the four N/4-point DFT’s obtained from equation 35 are combined
according to equation 34 and can be combined to yield the N-point DFT, as
described in [8]:

(EQ 37)

We also have to note that W0
N = 1, which will give us three complex

multiplications and 12 complex additions per Radix-4 butterfly. As the Radix-
4 algorithm consists of v steps (log(N)/log(4)) where each step involves N/4
number of butterflies we will get 3*v*N/4 = (3N/8)log2N number of complex
multiplications and (3N/2)log2N complex additions. If compared with the
computational power used by the Radix-2 algorithm in chapter 5, we will find
that we have a computer gain of 25% regarding the complex multiplications,
but that the number of complex additions increases by 50%.

The matrix in equation 37 is better described with a Radix-4 butterfly:

Fig.5. Radix-4 Butterfly, also referred to as Dragonfly

X 0 q,()
X 1 q,()
X 2 q,()
X 3 q,()

1 1 1 1

1 j– 1– j

1 1– 1 1–

1 j 1– j–

WN
0

F 0 q,()

WN
q

F 1 q,()

WN
2q

F 2 q,()

WN
3q

F 3 q,()

=

W0

Wq

W2q

W3q

in0

in1

in2

in3

-j
-1
j

-1

-1

j
-1
-jx

x

x

x

A

B

C

D

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

27(52)
As we are interested in a complex FFT we need to derive the equations for
the complex radix-4 algorithm.

(EQ 38)

Which in the complex matter will give us, starting with the easiest ones:
(r =real, i = imag)

(EQ 39)

And continuing with B gives:

(EQ 40)

Divided into real and imaginary part:

(EQ 41)

a in0 1×=

b in1 W
q×=

c in2 W
2q×=

d in3 W
3q×= 






 A a b c d+ + +=

B a c– j b d–()–=

C a c b d+()–+=

D a c– j b d–()+=

⇒

Ar ar br cr dr+ + +=

Ai ai bi ci di+ + +=

Cr ar br– cr dr–+=

Ci ai bi– ci di–+=

B ar ai cr– ci– jbr– jbi– jdr jdi+ + +=

B ar ai cr– ci– jbr– bi jdr di–+ + +=

imag real

Br ar cr– bi di–+=

Bi ai ci– br– dr+=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

28(52)
And the last one gives:

(EQ 42)

Divided into real and imaginary part:

(EQ 43)

To get the inputs ar, ai, br, bi, cr, ci, dr and di, we will have to multiply the input
in0r, in0i and so on with the twiddle factor. This render in:

(EQ 44)

This is adequate for all input signals. X = dragonfly specific value (twiddle
factor)

As the goal of this project is to implement a very fast fourier transform in a
realtime programmable logic system, we want as few complex multiplications
as possible, which yields lots of logic. With this in thoughts, to choose the
Radix-4 algorithm for implementation was obvious, as it has less complex
multiplications than the Radix-2 algorithm.

D ar ai cr– ci– jbr jbi jdr– jdi–+ + +=

D ar ai cr– ci– jbr bi– jdr– di+ + +=

imag real

Dr ar cr– bi– di+=

Di ai ci– br dr–+=

br in1r x() in1i x()sin×+cos×=

bi in1i x()cos× in1r x()sin×–=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

29(52)
Part of radix-4 Matlab algorithm

%%
% Innitialize variables.
t = 1:1:256;
x = sin(2*pi*0.35*t)+sin(2*pi*0.38*t);
x1 = x;
n = length(x);
t = log(n)/log(4);
%%
% Radix-4 Algorithm

for q = 1:t
 L = 4^q;
 r = n/L;
 Lx = L/4;
 rx = 4*r;
 y = x;
 for j = 0:Lx-1
 for k = 0:r-1
 a = y(j*rx + k + 1);
 b = exp(-i*2*pi*j/L)*y(j*rx + r + k + 1);
 c = exp(-i*2*pi*2*j/L)*y(j*rx + 2*r + k + 1);
 d = exp(-i*2*pi*3*j/L)*y(j*rx + 3*r + k + 1);
 t0 = a + c;
 t1 = a - c;
 t2 = b + d;
 t3 = b - d;
 x(j*r + k + 1) = t0 + t2;
 x((j + Lx)*r + k + 1) = t1 - i*t3;
 x((j + 2*Lx)*r + k + 1) = t0 - t2;
 x((j + 3*Lx)*r + k + 1) = t1 + i*t3;
 end
 end
end

Fig.6. Radix-4 FFT algorithm compared with Matlab FFT

0 50 100 150 200 250

20

40

60

80

100

n

Radix−4 FFT algorithm

0 50 100 150 200 250

20

40

60

80

100

n

Matlab FFT algorithm

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

30(52)
8 IMPLEMENTATION AND REALIZATION IN HARDWARE

Classical implementation of the FFT algorithm, with a processor or in
hardware usually requires a sequential algorithm, in some cases recursive,
this due to space and memory requirements. This slows down the execution
time. By utilizing modern programmable circuits, like a FPGA, a parallel
approach to the realization of FFT is available.

8.1 FPGA

The real-time FFT construction was meant to be realized in a FPGA, a field
programmable gate array, constructed and manufactured by Xilinx, Inc. The
Xilinx FPGA model Virtex-E is a state of the art programmable gate array for
high speed, high complex logical construction. There is a great field of
models, from small to large circuits. The logic inside a FPGA is constructed
around a building block called CLB, Configurable logic block.

Fig.7. CLB, Configurable logic block. Courtesy of Xilinx Inc.

Each of these blocks are divided into two slices, where each slice consists of
two look-up tables and some storage elements. The slices are internally
connected in between and are the basic high-speed logic in the circuit.

Available for implementation of this project was a PCB with a Xilinx Virtex-E
1000 mounted. This circuit holds a CLB array of 64 x 96 = 6144 CLB blocks.

For more information about Xilinx Virtex-E, refer to Xilinx Vertex-E data book
[13].

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

31(52)
8.2 COMPLEX FFT

The Ericsson Microwave specification for the project was to simulate, realize
and implement a complex FFT in a FPGA, a Xilinx Virtex-E 1000. The
specifications for the FFT was:

FFT-length
 Minimum: 16 complex samples
 Maximum: 1024 complex samples
 Typical: 64 or 256 (16)

Number of bits for the input signal
 Minimum: 10 bits
 Maximum: 16 bits
 Typical: 12

The idea was to implement the FFT as a building-block in a construction,
where the FFT-block will be placed after a quadrature divided A/D converted
signal as described in the figure below:

Fig.8. Construction configuration

A/D
f(x) x(n)

I/Q
I

Q FFT

FPGA, Xilinx Virtex-E 1000

I
Q

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

32(52)
8.3 BIT-LENGTH

The first thing to consider when implementing something discrete in
hardware is to consider the bit length with which you want to represent your
sample. The best way to do this is to simulate different types of bit lengths
and compare the phase error and amplitude error factor with the constrains
for your construction.

Fig.9. Radix-4 FFT, 12-bit length of samples

Fig.10. Radix-4 FFT, 14-bit length of samples

Fig.11. Radix-4 FFT, 16-bit length of samples

0 50 100 150 200 250

−40

−20

0

20

40
Radix−4 FFT, Bits = 12

n

dB

sin(2*pi*f1*p/Fs)

0 50 100 150 200 250

−40

−20

0

20

40
MATLAB FFT

n

dB

sin(2*pi*f1*p/Fs)

50 100 150 200 250

−3

−2

−1

0

Amplitude error factor Radix−4 FFT/MATLAB FFT

n

dB

50 100 150 200 250

0

5

10

15

Phase error

n

Ph
as

e
er

ro
r

0 50 100 150 200 250

−40

−20

0

20

40
Radix−4 FFT, Bits = 14

n

dB

sin(2*pi*f1*p/Fs)

0 50 100 150 200 250

−40

−20

0

20

40
MATLAB FFT

n

dB

sin(2*pi*f1*p/Fs)

50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Amplitude error factor Radix−4 FFT/MATLAB FFT

n

dB

50 100 150 200 250

−10

−8

−6

−4

−2

0

Phase error

n

Ph
as

e
er

ro
r

0 50 100 150 200 250

−40

−20

0

20

40
Radix−4 FFT, Bits = 16

n

dB

sin(2*pi*f1*p/Fs)

0 50 100 150 200 250

−40

−20

0

20

40
MATLAB FFT

n

dB

sin(2*pi*f1*p/Fs)

50 100 150 200 250

−0.1

0

0.1

0.2

0.3

0.4

0.5
Amplitude error factor Radix−4 FFT/MATLAB FFT

n

dB

50 100 150 200 250

−1.5

−1

−0.5

0

Phase error

n

Ph
as

e
er

ro
r

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

33(52)
As the constrains for the real-time FFT construction was to minimize the
phase and amplitude error as much as possible, but not more than that the
construction could be realizable. The simulation results pointed towards 16
bits, as this result had a small value of phase error.

8.4 RADIX-4 FFT ALGORITHM, N = 64

The first attempt of the implementation phase was to implement a Radix-4
FFT algorithm, with length 64 complex samples. For a Radix-4 FFT with
length N = 64, there are 3 dragonfly ranks, with each rank comprising 16
dragonflies.

In the first revision of the construction, the bit-length of the input samples to
the first dragonfly rank was 12, this due to the precision of the quadrature
block in figure 8. Those input samples were then multiplied with the phase
factor for the correct block, also with a precision of 12 bits. As the complex
output of the multiplication will generate 212 * 212 => 24 bits, the complex
output of the multiplication is rounded of and truncated to 14 bits. This results
in a 14 bits input to the second rank of dragonflies, which will by using the
same model as for the first rank of dragonflies, generate a complex output
with the length of 16 bits. As we also have a third rank of dragonflies, the
complex output from our FFT construction will have 18 bits.

Fig.12. Radix-4 FFT, N = 64

The FFT-block was constructed using the software EASE and the
programming language VHDL, i.e. Very high speed integrated circuit
Hardware Description Language.

The software Ease is a block model description language that lets you
construct the algorithm as blocks and takes care of the interconnection
between the blocks and then generates the VHDL code for this
interconnection [10].

I

Q

I I I

Q Q Q
12bits

12bits 14 bits

14 bits

16 bits

16 bits

18 bits

18 bits

D
ra

go
nfl

y
ra

nk

D
ra

go
nfl

y
ra

nk

D
ra

go
nfl

y
ra

nk

Radix-4 FFT, N = 64

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

34(52)
Part of the VHDL - code for one of the dragonflies in the first of the ranks is
as follows:

begin -- process radix4
 if clk'event and clk = '1' then

 ar_temp <= in0r*cos_0j;
 ai_temp <= in0i*sin_0j;
 br_temp1 <= in1r*cos_1j;
 br_temp2 <= in1i*sin_1j;
 bi_temp1 <= in1i*cos_1j;
 bi_temp2 <= in1r*sin_1j;
 cr_temp1 <= in2r*cos_2j;
 cr_temp2 <= in2i*sin_2j;
 ci_temp1 <= in2i*cos_2j;
 ci_temp2 <= in2r*sin_2j;
 dr_temp1 <= in3r*cos_3j;
 dr_temp2 <= in3i*sin_3j;
 di_temp1 <= in3i*cos_3j;
 di_temp2 <= in3r*sin_3j;

 br_temp <= br_temp1 + br_temp2;
 bi_temp <= bi_temp1 - bi_temp2;
 cr_temp <= cr_temp1 + cr_temp2;

 ci_temp <= ci_temp1 - ci_temp2;
 dr_temp <= dr_temp1 + dr_temp2;
 di_temp <= di_temp1 - di_temp2;

 ar_round <= ar_temp((N*2-1) downto (N-3)) + round;
 ai_round <= ai_temp((N*2-1) downto (N-3)) + round;
 br_round <= br_temp((N*2-1) downto (N-3)) + round;
 bi_round <= bi_temp((N*2-1) downto (N-3)) + round;
 cr_round <= cr_temp((N*2-1) downto (N-3)) + round;
 ci_round <= ci_temp((N*2-1) downto (N-3)) + round;
 dr_round <= dr_temp((N*2-1) downto (N-3)) + round;
 di_round <= di_temp((N*2-1) downto (N-3)) + round;

 temp1r <= ar_round((N+2) downto 1) + cr_round((N+2) downto 1);
 temp1i <= ai_round((N+2) downto 1) + ci_round((N+2) downto 1);
 temp2r <= ar_round((N+2) downto 1) - cr_round((N+2) downto 1);
 temp2i <= ai_round((N+2) downto 1) - ci_round((N+2) downto 1);

 ar_out <= temp1r + br_round((N+2) downto 1) + dr_round((N+2) downto 1);
 ai_out <= temp1i + bi_round((N+2) downto 1) + di_round((N+2) downto 1);
 br_out <= temp2r + bi_round((N+2) downto 1) - di_round((N+2) downto 1);
 bi_out <= temp2i - br_round((N+2) downto 1) + dr_round((N+2) downto 1);
 cr_out <= temp1r - br_round((N+2) downto 1) - dr_round((N+2) downto 1);
 ci_out <= temp1i - bi_round((N+2) downto 1) - di_round((N+2) downto 1);
 dr_out <= temp2r - bi_round((N+2) downto 1) + di_round((N+2) downto 1);
 di_out <= temp2i + br_round((N+2) downto 1) - dr_round((N+2) downto 1);

 end if;
end process radix4;
end a0 ; -- of Block1

The VHDL code above describes exactly the dragonfly illustrated in figure 5.
For this block the phase/twiddle factor is simple and can easy be realized as
a right shift of the input signal, but as we get towards the last dragonfly in the
construction, the phase factor constant gets more complex and has to be
realized as a high performance multiplier. The total block description is
described in appendix A1.

The 64 complex input signals is shifted into the FFT-block using a shift
register. This register is divided into a real and an imaginary part where the
input (complex) gets a new sample every clock cycle. When the shift register
gets full, it generates a valid signal that triggs the FFT-block that starts the
FFT process. When the process is done, a new valid signal is generated, and
an output shift register is started. For every clock cycle, a new processed
value is delivered to the output. After all 64 values are delivered the valid
signal gets low and shows that every sample has been shifted out.

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

35(52)
The code is before realization simulated, using a simulation program called
Modelsim, a VHDL simulation program. The result from this part showed
perfect result when comparing with a MATLAB FFT of a sinusoidal signal.

Fig.13. First FFT construction vs. Matlab FFT

What we can see from the plot in figure 13 is that we get a truncation and
rounding error that will generate a noise in the FFT plot. Although the
frequency peaks are in the correct position.

The next step after simulation is to realize the construction in the next
program. This program is called Synplify and translates/syntesis from code
to gate level.

The sad conclusion when reaching this level was that the construction was
to large for a Virtex-E 1000 circuit and even for the next higher circuit, Virtex-
E 2000, with twice as many CLB-blocks, but Xilinx has larger circuits, like the
Virtex-E 3200 where this construction would be implementable. This means
that we have to consider another bit-length or a shorter FFT-length.

The first try was to consider another bit length. By changing the design and
the dragonfly blocks to 12 bits we will save lots of hardware, but we will get
a higher amount of phase error.

The new dragonfly blocks (still as in figure 5) uses 12 bits as input and uses
12 bits precision on the phase factor. The output from the multiplication will
generate 24 bits that gets rounded of and truncated back to 12 bits. The
same applies for the second and the third dragonfly ranks. So the input will
be 12 bits and the output will also be 12 bits.

A new consideration is also to instead of using four complex multiplier (8 real
multiplier) as in the above mentioned implementation, we have to consider
the choice when we reuse the same multiplier for all of the multiplications.
This fact is better described by looking the VHDL code below.

10 20 30 40 50 60

5

10

15

20

25

30

n

Radix−4 and Matlab FFT, x=sin(2*pi*4/16*t), N=64, 12 bits input, 18 bits output

Matlab
Modelsim

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

36(52)
Part of VHDL-code for Radix-4 dragonfly with shared multiplier:

begin -- process radix4
if clk'event and clk = '1' then

if done_i = '1' then
run <= '1';
 radix <= 0;
end if;

if run = '1' then
case radix is

when 0 =>
 signal_in0 <= in0r;
 constant_in0 <= cos_0j;
 radix <= 1;
when 1 =>
 signal_in0 <= in0i;
 constant_in0 <= sin_0j;
 ar_temp <= signal_in0*constant_in0;
 radix <= 2;
when 2 =>
 signal_in0 <= in1r;
 constant_in0 <= cos_1j;
 signal_in1 <= in1i;
 constant_in1 <= sin_1j;
 ai_temp <= signal_in0*constant_in0;
 radix <= 3;
when 3 =>
 signal_in0 <= in1i;
 constant_in0 <= cos_1j;
 signal_in1 <= in1r;
 constant_in1 <= sin_1j;
 br_temp <= signal_in0*constant_in0 + signal_in1*constant_in1;
 radix <= 4;
when 4 =>
 signal_in0 <= in2r;
 constant_in0 <= cos_2j;
 signal_in1 <= in2i;
 constant_in1 <= sin_2j;
 bi_temp <= signal_in0*constant_in0 - signal_in1*constant_in1;
 radix <= 5;
when 5 =>
 signal_in0 <= in2i;
 constant_in0 <= cos_2j;
 signal_in1 <= in2r;
 constant_in1 <= sin_2j;
 cr_temp <= signal_in0*constant_in0 + signal_in1*constant_in1;
 radix <= 6;
when 6 =>
 signal_in0 <= in3r;
 constant_in0 <= cos_3j;
 signal_in1 <= in3i;
 constant_in1 <= sin_3j;
 ci_temp <= signal_in0*constant_in0 - signal_in1*constant_in1;
 radix <= 7;
when 7 =>
 signal_in0 <= in3i;
 constant_in0 <= cos_3j;
 signal_in1 <= in3r;
 constant_in1 <= sin_3j;
 dr_temp <= signal_in0*constant_in0 + signal_in1*constant_in1;
 radix <= 8;
when 8 =>
 di_temp <= signal_in0*constant_in0 - signal_in1*constant_in1;
 radix <= 9;
when 9 =>

ar_out <= ar_temp((2*N-1) downto(N)) + cr_temp((2*N-1) downto(N)) + br_temp((2*N-
1) downto(N)) + dr_temp((2*N-1) downto(N));

ai_out <= ai_temp((2*N-1) downto(N)) + ci_temp((2*N-1) downto(N)) + bi_temp((2*N-
1) downto(N)) + di_temp((2*N-1) downto(N));

br_out <= ar_temp((2*N-1) downto(N)) - cr_temp((2*N-1) downto(N)) + bi_temp((2*N-
1) downto(N)) - di_temp((2*N-1) downto(N));

bi_out <= ai_temp((2*N-1) downto(N)) - ci_temp((2*N-1) downto(N)) - br_temp((2*N-
1) downto(N)) + dr_temp((2*N-1) downto(N));

cr_out <= ar_temp((2*N-1) downto(N)) + cr_temp((2*N-1) downto(N)) - br_temp((2*N-
1) downto(N)) - dr_temp((2*N-1) downto(N));

ci_out <= ai_temp((2*N-1) downto(N)) + ci_temp((2*N-1) downto(N)) - bi_temp((2*N-
1) downto(N)) - di_temp((2*N-1) downto(N));

dr_out <= ar_temp((2*N-1) downto(N)) - cr_temp((2*N-1) downto(N)) - bi_temp((2*N-
1) downto(N)) + di_temp((2*N-1) downto(N));

di_out <= ai_temp((2*N-1) downto(N)) - ci_temp((2*N-1) downto(N)) + br_temp((2*N-
1) downto(N)) - dr_temp((2*N-1) downto(N));

 --done_o <= '1';
 radix <= 10;
when others =>
radix <= 0;
run <= '0';
--done_o <= '0';

 end case;
end if;

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

37(52)
As we can see in this code for the first block, we utilize a SWITCH-CASE
structure, using the same multiplier (actually two multipliers, one for the real
part and one for the imaginary part) for all the multiplications between the
phase factor and the input. This slows down the construction, as we have to
use more clock cycles to get all the inputs through the dragonfly. The timing
diagram below shows how the construction works.

Fig.14. Timing diagram for Radix-4 FFT, shared multiplier

The grey marked area in Shift_out(I/Q) is invalid data. Also this construction
showed to be to large for a Virtex-E 1000 circuit. The code translation
program Synplify showed though that the construction is realizable in a
Virtex-E 2000 at a clock rate of 55 MHz, this means that the computation
phase alone is 640 nanoseconds in duration. This can be compared with the
Xilinx Virtex LogiCore blocks that utilize 1.92 microseconds for the same
computation[13].

Another constrain that the LogiCore block has, is that it has to have all the
complex input samples in serial. It is easy to change the above described
construction to get all the samples as a gigantic parallel bus, or just speed
up the clock rate on the Shift_in register and the Shift_out register,
clkShift=N*clkFFT, as the clock rate constrain for this construction is in the
multipliers in the dragonflies and not in the Shift registers. The total block
diagram description is displayed in appendix A2.

As we wanted to implement and realize a construction in the accessible
Virtex-E 1000, described in figure 8 above we once again have to reconsider
the FFT-sample length and the bit length of the construction. As the above
mentioned 12 bits FFT with length 64 complex samples, utilized almost 75%
of a Virtex-E 2000 circuit, we can be quite sure that a 16 bits FFT with FFT
length 16 complex samples will be possible to implement in a Virtex-E 1000.

0 1 2 3 63 0

0 1 63

1 64 76 86 96 160

clk

Shift_in(I/Q)

Shift_in_valid

Rank 1 done

Rank 2 done

Rank 3 done

Valid_data

Shift_out(I/Q)

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

38(52)
8.5 RADIX-4 FFT ALGORITHM, N = 16

A new construction with the FFT length of 16 complex samples had to be
made. The construction consists of two dragonfly ranks with each four
dragonflies. It also consists of an input register that holds four predefined
signals for the FFT, this instead of using the quadrature divided A/D input
signal:

Where t goes from 1 to 16. The signals are then converted to two’s
complement using a Matlab function, TWOSCOMP(no_of_bits,DATA).

Fig.15. Input signal X1 and X2

Fig.16. Input signal X3 and X4

x1 2π 4
16
------t× 

 sin=

x2 2π 4.5
16
-------t× 

 sin=

x3 2π 4
16
------t× 

  j 2π 4
16
------t× 

 sin+cos=

x4 2π 4.5
16
-------t× 

  j 2π 4.5
16
-------t× 

 sin+cos=

5 10 15
−1

−0.5

0

0.5

1

n

Sequence = "00", sin(2*pi*4/16*t)

5 10 15

1

2

3

4

5

6

7

8

n

FFT of "00"

5 10 15

−0.5

0

0.5

1

n

Sequence = "01",sin(2*pi*4.5/16*t)

5 10 15

1

2

3

4

5

n

FFT of "01"

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

n

Sequence = "10", cos(2*pi*4/16*t)+i*sin(2*pi*4/16*t)

5 10 15

2

4

6

8

10

12

14

16

n

FFT of "10"

−1 −0.5 0 0.5

−0.5

0

0.5

1

n

Sequence = "11", cos(2*pi*4.5/16*t)+i*sin(2*pi*4.5/16*t)

5 10 15

2

4

6

8

10

n

FFT of "11"

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

39(52)
The idea with those four signals is to let the FFT construction consider two
real input signals, one within a FFT channel and one outside, and two
complex input signals, also here one within a FFT channel and one outside.

The two signals that are outside the FFT channel will spread through all the
channels, as we can see from the FFT plots above.

The FFT construction with bit length 16 and the four predefined signals, x1-
x4, can be defined as:

Fig.17. Radix-4 N = 16

The construction was syntesized in the code translation program Synplify
and was realizable in 50 MHz using the below showed timing constrains.

Fig.18. Timing diagram for Radix-4 FFT length 16, 16 bits

I I I

Q Q Q

16 bits

16 bits

16 bits

16 bits

16 bits

16 bits

D
ra

go
nfl

y
ra

nk

D
ra

go
nfl

y
ra

nk

In
pu

t s
ig

na
l x

1-
x4

S
hi

ft_
ou

t r
eg

is
te

r

Q
16 bits

16 bits

I

To
 lo

gi
ca

l a
na

ly
se

r

Fr
om

 P
at

te
rn

 g
en

er
at

or

X1-X4

clk

reset’

on

0 1 2 3 15 0

0Invalid data 1 15

0 14 15

1 16 26 41
clk

Shift_in(I/Q)

Shift_in_valid

FFT done

Shift_out(I/Q)

Absolute

Valid data

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

40(52)
The input connection to the FPGA goes through a serial interface called
HOT-LINK, a high speed serial interface, that is connected to a Pattern
generator, a Hewlett Pacard HP16522A (200 MHz in 32 channels) for
generating the input stimuli.

The output 16 bits vector from the real (I) and imaginary (Q) part, is taken
care of by a Logical Analyser, a Hewlett Pacard HP16555D (2.0 M Samples,
110/500 MHz). As this instrument has the possibility to display the output
both as listing and as a graph, a absolute value block was made and
implemented after the Shift_out register:

Fig.19. Absolute value block

As the calculation of the absolute value is a quite complex procedure to do,
a alternative method is utilized. If we consider the following equations:

(EQ 45)

This method is quite easy to implement in hardware, and the precision of this
method is +1% / -2% of variation on the output. This block is controlled by the
Absolute trigger, connected to the Pattern generator. When the Absolute
trigger = 1, the absolute value is delivered in the real part output channel to
the Logic Analyser. The imaginary part equals zero.

I

Q

16 bits

16 bits S
hi

ft_
ou

t r
eg

is
te

r

Q
16 bits

16 bits

I

To
 lo

gi
ca

l a
na

ly
se

rI

Q

16 bits

16 bits

A
bs

ol
ut

e
va

lu
e

Fr
om

 F
F

T
 r

an
k

2

From Pattern generator
Absolute

A Max I Q,{ }=

B Min I Q,{ }=

Absolutevalue Max A
7
8
---A

1
2
---B+,

 
 
 

=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

41(52)
The construction can be compared with Xilinx LogiCore block [13] that also
uses 16 bits precision on the input and the phase factor. The Xilinx LogiCore
block requires 16 clock cycles (at a clock rate of 120 MHz) when the one
mentioned above, requires 10 clock cycles (at a clock rate of 50 MHz). The
difference once again is that the Xilinx LogiCore block requires that the input
data is delivered in serial, the above described block can take care of 16 new
complex 16 bits samples on every clock cycle.

(EQ 46)

(EQ 47)

The construction require twice as many CLB’s then the Xilinx LogiCore block
(963 CLB’s / 1876 CLB’s). The total block diagram description is displayed in
appendix A3.

TFFTXilinx
1

120MHz
--------------------- 16× 133.33ns= =

TFFTEMW
1

50MHz
------------------ 10

1
16
------×× 12.5ns= =

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

42(52)
9 VERIFICATION AND RESULTS

9.1 TEST PATTERN

To get a file to download to the configuration PROM, a circuit specific
software called Design manger is utilized. When you then apply power to
your PCB, the circuit, in this case the Xilinx Virtex-E 1000 will download the
configuration file and load your design.

A verification/test pattern was programmed in the Pattern generator.

Test pattern:

1) reset = 0 (active low)
2) Synchronize HOT-LINK
3) absolute = 0 (output = real + imag part)
 sequence = 00 (signal x1)
 on_signal = 1 (the signal in on)
4) reset = 1
5) When output signal Test_valid_data = 1
 Collect fft_out_r (real part, I), and

Collect fft_out_i (imag part, Q) in Logic Analyser
 (listning)
6) When Test_valid_data = 0 again
 reset = 0
7) Synchronize HOT-LINK
8) absolute = 1 (gives real = absolute value, imag = 0)
 sequence = 00 (signal x1)
 on_signal = 1
9) When Test_valid_data = 1
 Collect fft_out_r and display as graph
10)When Test_valid_data = 0 again
 Goto 1 but change to next signal (x2-x4)

The output was collected in the Logical Analyser and transferred to Matlab
for verification.

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

43(52)
9.2 MATLAB VERIFICATION

The files from the Logic Analyser was loaded in Matlab and compared with
the result from a FFT made by Matlab itself on the same input signal (x1-x4).

When the absolute trigger from the Pattern generator is set to 1, the output
graph from the Logical Analyser displayed the following result.

Fig.20. Output graph signal X1, absolute = 1

Fig.21. Output graph signal X2, absolute = 1

Fig.22. Output graph signal X3, absolute = 1

Fig.23. Output graph signal X4, absolute = 1

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

44(52)
If we compare figure 15 and 16 with figure 20 to 23, we will see that the
construction is working properly. The value listing from the verification with
signal X1-X4 was properly compared with FFT calculations in Matlab.

Fig.24. Output complex and absolute, signal 1 vs. Matlab

Fig.25. Output complex and absolute, signal 2 vs. Matlab

2 4 6 8 10 12 14 16

−250

−200

−150

−100

−50

0

n

d
b

Signal X1, FFT FPGA complex, FFT FPGA absolut & FFT Matlab

FPGA complex (Error vs. Matlab in dB) −311.0382
FPGA absolut (Error vs. Matlab in dB) −311.0382
Matlab

2 4 6 8 10 12 14 16

20

22

24

26

28

30

32

34

36

38

n

d
b

Signal X2, FFT FPGA complex, FFT FPGA absolut & FFT Matlab

FPGA complex (Error vs. Matlab in dB) −30.4532
FPGA absolut (Error vs. Matlab in dB) −30.4225
Matlab

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

45(52)
Fig.26. Output complex and absolute, signal 3 vs. Matlab

Fig.27. Output complex and absolute, signal 4 vs. Matlab

The Error value calculation was made according to the following formula

(EQ 48)

2 4 6 8 10 12 14 16

−250

−200

−150

−100

−50

0

n

db

Signal X3, FFT FPGA complex, FFT FPGA absolut & FFT Matlab

FPGA complex (Error vs. Matlab in dB) −301.3538
FPGA absolut (Error vs. Matlab in dB) −301.3538
Matlab

2 4 6 8 10 12 14 16

26

28

30

32

34

36

38

40

42

44

n

db

Signal X4, FFT FPGA complex, FFT FPGA absolut & FFT Matlab

FPGA complex (Error vs. Matlab in dB) −39.2248
FPGA absolut (Error vs. Matlab in dB) −35.1
Matlab

Error 10 10
FFT Matlab() FFT FPGA()–()2∑

FFT Matlab()()2∑

 
 
 

log=

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

46(52)
10 CONCLUSION

• As the Radix-4 FFT algorithm utilizes less complex multipliers
than the Radix-2 FFT algorithm, the Radix-4 algorithm is
preferable for hardware implementation.

• A parallel programming approach seems to be the model when
a real time system with high sampling rate is desired.

• To reach an acceptable level of phase error, it is desirable to
use 16 bits precision on the input signal and the phase factor

• By using a separate clock with clock rate clkShift=N*clkFFT, for
the input and output shift registers, it would be possible to
process a FFT on a signal of length N every clock cycle, clkFFT.

• By using shared multiplier in the dragonflies, less CLB’s is
utilized, with the cost of longer execution time.

11 IDEAS FOR FURTHER STUDIES

As there are two FFT constructions of length N=64, one with precision 12 bits
and one with precision 12, 14 and 16 bits, (dragonfly rank 1, 2 and 3) verified
to be correct in Modelsim, it would be desirable to implement and verify those
constructions when a circuit board with the necessary Xilinx Virtex-E circuit
is available. Improvement and development of the input and output shift
registers are also interesting as this would improve the bandwidth of a real
time sampled signal when computing FFT.

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

47(52)
12 REFERENCES

[1] Bergland, G. D.: ’A guided tour of the fast Fourier transform’,
IEEE Spectrum, July 1969

[2] Bracewell, R. N.: ’The Fourier Transform and its applications’,
The McGraw-Hill Companies, Inc, 2000, ISBN: 0-07-303938-1

[3] Brigham, E. O.: ’The fast fourier transform’, Prentice-Hall, Inc,
1974, ISBN: 0-13-307496-X

[4] Cartwright, M.: ’Fourier Methods for mathematicians, scientists
and engineers’, Ellis Horwood Limited, 1990, ISBN: 0-13-327016-5

[5] Gray, R. M., Goodman, J. W.: ’Fourier Transforms, an
introduction for engineers’, Kluwer Academic Publishers, 1995,
ISBN: 0-7923-9585-9

[6] Lasser, R.: ’Introduction to Fourier Series’, Marcel Dekker, Inc.,
1996, ISBN: 0-8247-9610-1

[7] Ma, Y., Wanhammar, L.: ’A hardware Efficient Control of
Memory Addressing for High-Performance FFT Processors’, IEEE
Transaction on Signal Processing, Vol. 48, No. 3, March 2000

[8] Proakis, J. G.: ’Digital Signal Processing, Principles, algorithms
and applications’, Prentice Hall, Inc., 1996, ISBN: 0-13-394289-9

[9] Roche, C.: ’A Split-Radix Partial Input/Output Fast Fourier
Transform Algorithm’,

[10] Translogic: ’Ease and Eale User’s Manual’, Translogic BV, Ede,
The Netherlands, 1998, http://www.translogiciccorp.com, (Acc 2001-02-05)

[11] Van Loan, C.:’ Computational Frameworks for the Fast Fourier
Transform’, SIAM, 1992, ISBN: 0-89871-285-8

[12] Vretblad, A.: ’An introduction tp Fourier Analysis and some of
its applications’, Department of mathematics, Uppsala, Sweden, 1996,
ISBN: 91-506-1171-2

[13] Xilinx Inc.: ’Xilinx Virtex-E Databook’, http://www.xilinx.com,
2000-2001, (Acc 2001-02-05)

[14] Zonst, A. E.: ’Understanding the FFT’, Citrus Press, 1995,
ISBN: 0-9645681-8-7

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

48(52)
Appendix A1 Ease block structure of Radix-4 FFT, N = 64

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

49(52)
Appendix A2 Ease block structure of Radix-4 FFT, N = 64, shared mult

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

50(52)
Appendix A3 Ease block structure of Radix-4 FFT, N = 16

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

51(52)
Appendix B Matlab code

Datum - Date Rev

Nr - No.Uppgjord (även faktaansvarig om annan) - Prepared (also subject responsible if other)

Dokansv/Godkänd - Doc respons/Approved Kontr - Checked File

2001-02-12 A1

FX/D-2001:007

REPORT

 EMW/FX/DC(Anders Wanner)

 EMWMSNN(Magnus Nilsson)

52(52)
Appendix C Output listning

	Abstract
	Preface
	Contents Page
	1 Introduction
	1.1 Background
	1.2 Task
	1.3 Technical function

	2 Jean-Baptiste-Joseph Fourier
	3 The Fourier Transform
	(EQ 1)
	(EQ 2)
	(EQ 3)
	(EQ 4)
	(EQ 5)
	(EQ 6)
	(EQ 7)
	(EQ 8)
	Equation 9a and 9b (EQ 9)
	(EQ 10)
	(EQ 11)

	4 The Discrete Fourier Transform
	(EQ 12)
	(EQ 13)
	(EQ 14)
	(EQ 15)
	(EQ 16)
	(EQ 17)

	5 Development of the Fast Fourier Transform
	5.1 Theory of the Fast Fourier Transform
	(EQ 18)

	5.2 History of the Fast Fourier Transform

	6 The Radix - 2 Algorithm
	(EQ 19)
	(EQ 20)
	(EQ 21)
	(EQ 22)
	(EQ 23)
	(EQ 24)
	(EQ 25)
	(EQ 26)
	(EQ 27)
	(EQ 28)
	Fig.1. FFT-Butterfly
	(EQ 29)
	(EQ 30)
	(EQ 31)
	(EQ 32)
	(EQ 33)

	Fig.2. Radix-2 DFT structure
	Fig.3. Radix-2 vs. Direct calculation in flops
	Fig.4. Radix-2 algorithm comp. with MATLAB function FFT

	7 The Radix-4 Algorithm
	(EQ 34)
	(EQ 35)
	(EQ 36)
	(EQ 37)
	Fig.5. Radix-4 Butterfly, also referred to as Dragonfly
	(EQ 38)
	(EQ 39)
	(EQ 40)
	(EQ 41)
	(EQ 42)
	(EQ 43)
	(EQ 44)

	Fig.6. Radix-4 FFT algorithm compared with Matlab FFT

	8 Implementation and Realization in hardware
	8.1 FPGA
	Fig.7. CLB, Configurable logic block. Courtesy of Xilinx Inc.

	8.2 Complex FFT
	Fig.8. Construction configuration

	8.3 Bit-length
	Fig.9. Radix-4 FFT, 12-bit length of samples
	Fig.10. Radix-4 FFT, 14-bit length of samples
	Fig.11. Radix-4 FFT, 16-bit length of samples

	8.4 Radix-4 FFT algorithm, N = 64
	Fig.12. Radix-4 FFT, N = 64
	Fig.13. First FFT construction vs. Matlab FFT
	Fig.14. Timing diagram for Radix-4 FFT, shared multiplier

	8.5 Radix-4 FFT algorithm, N = 16
	Fig.15. Input signal X1 and X2
	Fig.16. Input signal X3 and X4
	Fig.17. Radix-4 N = 16
	Fig.18. Timing diagram for Radix-4 FFT length 16, 16 bits
	Fig.19. Absolute value block
	(EQ 45)
	(EQ 46)
	(EQ 47)

	9 Verification and Results
	9.1 Test pattern
	9.2 Matlab verification
	Fig.20. Output graph signal X1, absolute = 1
	Fig.21. Output graph signal X2, absolute = 1
	Fig.22. Output graph signal X3, absolute = 1
	Fig.23. Output graph signal X4, absolute = 1
	Fig.24. Output complex and absolute, signal 1 vs. Matlab
	Fig.25. Output complex and absolute, signal 2 vs. Matlab
	Fig.26. Output complex and absolute, signal 3 vs. Matlab
	Fig.27. Output complex and absolute, signal 4 vs. Matlab
	(EQ 48)

	10 Conclusion
	11 Ideas for further studies
	12 References
	Appendix A1 Ease block structure of Radix-4 FFT, N = 64
	Appendix A2 Ease block structure of Radix-4 FFT, N = 64, shared mult
	Appendix A3 Ease block structure of Radix-4 FFT, N = 16
	Appendix B Matlab code
	Appendix C Output listning

