
Speaker Verification in JAVA October 18, 2001 1

Speaker Verification in JAVA

A thesis submitted in par tial fulfillment of
the requirements for the degree of

Master of Computer and Information
Engineering

School of M icroelectronic Engineer ing
Gr iffith University

By
Magnus Nilsson
October 2001

Speaker Verification in JAVA October 18, 2001 2

Statement of Or iginality

This work has not been previously submitted for a degree or diploma in any
university. To the best of my knowledge, the thesis contains no material
previously published or written by any other person except where a refer-
ence is made.

Magnus Nilsson

Speaker Verification in JAVA October 18, 2001 3

Abstract

The Signal Processing Laboratory at Griffith University conducts research
in the digital signal processing area, specialized on image and speaker veri-
fication, under the supervision of Professor Kuldip K. Paliwal.

In this report the design and implementation of a speaker verification sys-
tem in Java is described, and the use of Java as a research language, due to
its platform independency. The system is using Vector Quantization, VQ,
and Mel Frequency Cepstral Coefficients, MFCC’s, since the concept of
using VQ and MFCC’s is a popular technique with high accuracy.

Simulation in Matlab and implementation in Java 2 version 1.3 show a total
error rate of four percent.

You are welcome to visit the Signal Processing Laboratory on the web:
http://spl.me.gu.edu.au

Speaker Verification in JAVA October 18, 2001 4

Preface

This thesis is a part of my education towards a Master degree in Computer
and Information Engineering at Griffith University, Brisbane, Australia.
Project 4, MEE8099.

The work is conducted at the Signal Processing Laboratory, Griffith Uni-
versity, Brisbane, Australia.

I would like to thank the following people who has been of great help to me
during my work.

My supervisor Professor Kuldip K. Paliwal, Griffith University.

My friends, the research staff at the Signal Processing Laboratory, Griffith
University, Conrad Sanderson, Mohammad Dehghani, Brett Wildermoth,
Stephen So, Nanda Koestoer, Xuechuan Wang and Ganesh Nanik.

I would also like to thank my family back home in Sweden and my friends
here in Brisbane, without whom this degree never would have been possi-
ble, Anne Ragnefors, Anna-Stina Nilsson, Ove Nilsson, Erik Nilsson, Maj-
Britt Nilsson, Mattias Berglund, Scott Jones, Mikael Bergman, Joakim
Blomkvist, David Thunmarker, Krister Nyman, Mattias Almlund, Bryan
Wythe, Tarik Hammadou, Alok Sharma, Satwant Sandhu, and the rest of
the people I have met here which have made my time in Brisbane enjoy-
able.

Thanks all!

Speaker Verification in JAVA October 18, 2001 5

Table of Contents
1.0 Introduction..6

1.1 Background..6

1.2 Task..6

1.3 Technical Function ..6

2.0 JAVA...7
2.1 History of JAVA ...7

2.2 Virtual Machine...8

2.3 Applet and Application..9

2.4 Platform Portability ...9

3.0 Speaker Verification and Vector Quantization...11
3.1 Speaker Recognition and Speaker Verification ...11

3.2 Speech Feature Extraction...13

3.3 Mel-frequency cepstral coefficients processor ..14
3.3.1 Frame Blocking...15
3.3.2 Windowing..16
3.3.3 Fast Fourier Transform (FFT) ...16
3.3.4 Mel-frequency Wrapping..18
3.3.5 Cepstral Coefficients...20
3.3.6 Summary ...20

3.4 Feature Matching...21
3.4.1 Introduction...21
3.4.2 Clustering the Training Vectors...21

3.5 Verification Part ...24
3.5.1 Threshold ..24
3.5.2 Cohort Speakers..24

4.0 Implementation in JAVA ..25
4.1 Speech Data...25

4.2 Speech Processing ...25

4.3 Simulation and Evaluation...27
4.3.1 Tests on TIMIT ...27
4.3.2 Error rate...27

5.0 Parallel Port Extension...29
5.1 JAVA and Hardware accessibility ..29

5.2 Hardware module..29

6.0 Conclusion ...31

7.0 Ideas for further studies...31

8.0 References..32

Appendix A. Java Code, simulation...33

Appendix B. Matlab Code, simulation ..34

Appendix C. Java Code, application..35

Speaker Verification in JAVA October 18, 2001 6

1.0 Introduction

1.1 Background

It would be interesting to develop a Speaker Verification system/software
in JAVA, since the JAVA language is said to be platform independent and
would be interesting as a research language.

1.2 Task

To study, implement and evaluate a VQ (Vector Quantization) Speaker Ver-
ification system in JAVA, using MFCC’s (Mel Frequency Cepstral Coeffi-
cients).

1.3 Technical Function

A graphical software implementation which shall record speech from a per-
son throw a microphone, verify the person as true speaker or false speaker.

Speaker Verification in JAVA October 18, 2001 7

2.0 JAVA

2.1 History of JAVA

The history of Java design began in 1991 at Sun Microsystems by James
Gosling & Co. The idea behind the Java platform was to develop a pro-
gramming language that address the problem of building software for net-
work consumer devices. To be able to meet all these requirements, the
compiled code had to survive transport across networks, operate on any cli-
ent, assure the client that it was safe to run, and possess the capability to
work on a wide range of platforms and CPU's [1]. These requirements
turned out to form the Java programming language as a general-purpose
object-oriented concurrent language. Its syntax is similar to C and C++, but
it leaves out many of the features that make C and C++ complex, confus-
ing, and unsafe.

The first name for Java was Oak, but this name was already taken by
another language, so the creators decided upon the name Java. Their first
product was a remote control that did not get much support from the cus-
tomers.

Everything changed in the early 1990's when the Internet quickly gained
popularity. The first browser for surfing the net was called Gopher and
since it allowed only text based pages to be displayed, people found it
pretty boring. After a while, the web browser Mosaic appeared, (later
became Netscape), allowing graphical images to be displayed on web
pages and, as a result, more people became interested in the net surfing and
web developers started to build pages with graphics contents. Internet
enthusiasts quickly understood that the content supported by the web's
HTML document format was too limited. HTML extensions, such as
forms, only highlighted those limitations, while making it clear that no
browser could include all the features users wanted, something that
extended the browser was the answer.

The Java development team saw the Internet as a very interesting and
promising way of implementing the language and making web pages look
and function better. They also realized that it is interesting to build a new
browser that would allow the Java enabled web pages to be displayed effec-
tively. The first of the web browsers that made it possible to embed pro-
gram inside a HTML page, was Sun's HotJava browser, which highlighted
the interesting properties of the Java programming language and platform
portability. The Java programs are transparently downloaded into the
browser together with the HTML pages in which they appear. Be course of
the safety of Java, before being accepted by the browser, the programs are
carefully checked to make sure they are safe. Due to Java’s portability, the

Speaker Verification in JAVA October 18, 2001 8

programs behave the same way regardless of where they come from or
what kind of machine they are being loaded into and run on.

The first big step for Java came on May 23 1995, when Java Technology
was for the first time shown to the world. However, one of the biggest step
forward for Java, came when Netscape also decided to enable its browser to
display web pages that contained Java. This was allowed in Netscape ver-
sion 2 for the first time, and also Microsoft saw the benefits in using Java
and enabled its browser to display Java applets as well. The development of
Java has being continued with growing speed, and the JavaTM 2 platform
is now available for the public (http://www.java.sun.com). The Java devel-
opers say that the Java 2 platform is the definitive environment for projects
intending to build and install web-centric software applications that will be
capable to run on different computers, servers and other computing devices
[1].

All web browser incorporating the Java or Java 2 platform is no longer lim-
ited to a fixed set of capabilities. Internet surfers can now visit web pages
that holds a dynamic content, and can be assured that their machines can-
not be damaged by that content. Programmers can write a program once,
and it will run on any machine supplying a Java or Java 2 runtime environ-
ment.

2.2 Vir tual Machine

The Java virtual machine is the cornerstone of Java. This component is
technology responsible for Java’s hardware- and operating system- inde-
pendence, the small size of its compiled code, and its ability to protect
users from malicious programs [1]. The Java virtual machine can be
defined as an abstract computing machine, and when being compared with
real computing machines, it has a similar instruction set and manipulates
various memory areas at run time. Java is not the first programming lan-
guage using a virtual machine. Possibly the best-known virtual machine
before Java was the P-Code machine of UCSD Pascal.

The first Java virtual machine prototype implementation, done at Sun
Microsystems, emulated the Java virtual machine instruction set in soft-
ware hosted by a handheld device that resembled a contemporary Personal
Digital Assistant (PDA). Sun's current Java virtual machine implementa-
tions (version 1.3), emulate the Java virtual machine on Win32, Linux
RedHat and Unix Solaris hosts in much more sophisticated ways. However,
the Java virtual machine does not assume any particular implementation
technology, host hardware, or host operating system. Due to this fact, it can
just as well be implemented by compiling its instruction set to that of a sil-
icon CPU. It may also be implemented in microcode or directly in silicon.

Speaker Verification in JAVA October 18, 2001 9

2.3 Applet and Application

There are two types of Java programs, the stand-alone program, also known
as a Java application, or the web browser based, that runs within a Java-
compatible browser, the Java applet.

A Java applets have access to the libraries of the Java Application Program-
ming Interface (API) that is supported by all Java capable browsers, such as
Microsoft Internet Explorer and Netscape Communicator. The API cur-
rently includes libraries for applets, input and output, language, network
access, GUI and general utilities. An applet is defined by class files that can
be downloaded from one or more other computers on the internet. Security
is a critical issue that has dominated the design, and as mentioned earlier,
an applet is always subject to a verification process to check for language
compliance. After the security check the memory layout is determined and
execution begins. Applets can be written with with a basic function that is
customized by parameters that are specified in the web page. The Java lan-
guage allows dynamic linking to software libraries written in other lan-
guages. However, for security reasons this feature is usually disabled for
software that is downloaded from the net.

When dealing with a Java stand-alone application, one has to have the Java
virtual machine, i.e. the Java runtime environment installed. This software
pack is free of charge and can be downloaded from the SUN web page, or
will be distributed together with the application. A Java stand-alone appli-
cation can be compared with the well known executable files one get when
compiling a C or C++ code. An application does not have the same security
constrains as an applet, but there is still a certain amount of problems to
access the actual hardware of the host computer, i.e parallel/serial ports and
soundcard.

2.4 Platform Por tability

In the research world most computational research is done in C or C++, and
on a wide variety of workstations and personal computers, using different
operating systems. When publishing a paper, there would be interesting to
be able to distribute the research publication together with an executable
file that displays the results. It might appear that any author could easily
make the C/C++ programs and data available for others to reproduce the
results of the publication, but in fact, moving C/C++ programs from one
compiler to another or from one computer to another is very difficult [2].
For starters, there is no standard definition of what an integer or floating
point is. The definition of data types is implementation dependent for
example. As a result, without significant modifications, a program may not
execute correctly, or maybe not at all when moved from one machine to
another.

Speaker Verification in JAVA October 18, 2001 10

The burden of portability has always fallen on the developer of the code
when dealing with C/C++ or any other platform dependent language. When
dealing with platform dependent languages the provider can choose to
address this problem by using only those parts of the C/C++ language that
are “highly portable” and thus offer the best chance of executing correctly
on a variety of platforms, computers and compilers. This is not a simple
task. Another approach is to maintain different versions of the program for
different platforms and computers. A provider can use either approach or
some combination. Both approaches are difficult and, this task is never
completed, to the fact that changes are made in the language and different
kind of platforms, compilers and computers are introduced, This means
that the careful provider has to constantly monitor the developments on the
computers that he has chosen to support.

One way of dealing with this fact is to distribute the code for the program.
Even this is not bullet proof. If the user does not port the code correctly, the
user may claim that the results reported in the publication can not be repro-
duced, meaning that there could be a question of validity of the original
results. Other users may, frustrated by the difficulty of porting the code,
fully discard the results.

All is said to be addressed in the Java language, and the big idea behind
Java is that the responsibility for porting computer programs has been
removed from the hands of the providers and users and made it the respon-
sibility of the network, that means the Java virtual machine. Java programs
are compiled and executed on a specific computer, but the linking and load-
ing of programs is a network capability and the execution produces stan-
dard results regardless of the computer and platform. By shifting the
responsibility for porting programs from the provider and users, a major
advance has been made.

One significant drawback of Java’s portability benefits is that it will have to
pay in expense of performance characteristics. The characteristics can be
summarized as:

Any application built to run on a specific computer with specific hard-
ware and software resources executes better than the same application
written in Java that runs on all computers [2].

These facts are also to be taken into consideration and whether the trade-
offs are justified. It is possible to dynamically link an applet to C libraries.
This, of course, destroys the portability of the program.

Speaker Verification in JAVA October 18, 2001 11

3.0 Speaker Ver ification and Vector Quantization

The following section will describe the consept of speaker verification and
speaker recognition

3.1 Speaker Recognition and Speaker Ver ification

A speaker recognition system involves the process of automatically recog-
nizing who is speaking on the basis of individual information included in
the speakers speech waves. Speaker verification, on the other hand, is the
process of accepting or rejecting the identity claim of a speaker. The differ-
ence of these concepts are described in figure 1 and figure 2 (derived from
[3].

FIGURE 1. Speaker Recognition system

FIGURE 2. Speaker Verification system

Input
speech

 Feature
Extraction

Similarity

.x
x
x

Reference model
((Speaker #N)

Reference model
(Speaker #1)

Similarity

Minimum
Distance

Recognition
 result
(Speaker ID)

Decision

Reference model
(Speaker #N)

 Feature
Extraction Similarity

Input
speech

.
 Verification
 result
 True/False

Threshold
Speaker ID
 (#N)

Speaker Verification in JAVA October 18, 2001 12

The concept of recognizing a person through their voice can be useful as
security control when accessing confidential information areas, access to
remote computers, voice dialing, banking by telephone, telephone shop-
ping, database access services, information services, voice mail or as PIN
code for your ATM.

Speaker recognition and verification methods can be divided into text-inde-
pendent and text-dependent methods. In a text-independent system,
speaker models capture characteristics of a persons speech which show up
irrespective of what one is saying. In a text-dependent system, on the other
hand, the recognition of the speakers identity is based on his or her speak-
ing one or more specific phrases, like passwords, card numbers, PIN codes,
etc. All technologies of speaker recognition, identification and verification,
text-independent and text-dependent, each has its own advantages and dis-
advantages and may require different treatments and techniques.

The goal of this project is to develop a speaker verification system in the
platform independent software language Java, and since the system will be
using Vector quantization and Mel frequency cepstral coefficients it is clas-
sified as a text-independent speaker verification system since its task is to
verify the person who speaks regardless of what this person is saying.

All speaker recognition/verification system contains of two basic building
blocks (see figure 1 and 2), feature extraction and feature matching.

The first part, the feature extraction is a process that will extract a small
amount of speech data from the voice signal recorded. This data can later
be used to represent each speaker. The second part, the feature matching
involves the actual procedure to identify the unknown speaker by compar-
ing extracted features from this persons voice input with the ones from a set
of known speakers. All speaker verification systems also have to serve two
distinguish phases. The first one is referred to as the training phase and the
second as the verification or testing phase. For the training phase, the
speaker has to provide samples of their speech so that the verification sys-
tem can build a model for the speaker. For our verification system, a thresh-
old is also computed from the training samples and cohort speakers. Later,
during the verification phase, the input speech is matched with the earlier
stored models and a decision calculation is made, deciding if the speaker is
the claimed or not.

Speaker verification and speaker recognition are complex areas and still hot
research subjects, with many different interesting ways of doing the feature
extraction. An automatic speaker verification system works based on the
premise that a persons speech exhibits characteristics that are unique to the
speaker [4]. However, this task is a bit complicated due to variance of the
speaker, such as peoples voice change with time, health conditions (i.e. the
speaker has a cold), speaking rates, etc. and under which conditions the

Speaker Verification in JAVA October 18, 2001 13

speech is recorded. Examples of these are acoustical noise and variations in
recording environments.

3.2 Speech Feature Extraction

This phase includes converting the speech waveform into a parametric rep-
resentation with a considerably low information rate for further analysis
and processing. This phase is often referred to as the signal processing
front end.

The speech signal can be described as a slowly timed varying signal, or
quasi-stationary. A sample of speech from the well known speech database
TIMIT [5], in this case from a version of TIMIT with noise added and a
sample rate of 8000 Hz, can be seen below.

FIGURE 3. Speech data from TIMIT, Fs = 8000Hz, 16-bits, telephone noise added

When examined over a short period of time, somewhere between 20 and 30
msec, the characteristics are assumed to be fairly stationary.

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−3000

−2000

−1000

0

1000

2000

3000

4000

Sample

S
pe

ec
h

A
m

pl
itu

de

Speech from NTIMIT8

Speaker Verification in JAVA October 18, 2001 14

3.3 Mel-frequency cepstral coefficients processor

There exists a wide range of possibilities for parameter extraction from a
speech frames. As mentioned earlier, we will use one of the most popular
methods, Mel-Frequency Cepstral Coefficients (MFCC). MFCC’s are
based on the known variation of the human ears critical bandwidths with
frequency, filters spaced linearly at low frequencies and logarithmically at
high frequencies have been used to capture the phonetically important
characteristics of speech [6]. The characteristics is expressed on the mel-
frequency scale, which is a linear frequency spacing below 1000 Hz and a
logarithmic spacing above 1000 Hz. In addition, rather than the speech
waveforms themselves, MFCC’s are shown to be less susceptible to the
above mentioned variation of the speakers voice and surrounding environ-
ment. The basic concept of a mel-frequency cepstral coefficient processor
is described below.

FIGURE 4. Block diagram of MFCC processor

Continues Speech

 Frame
 Blocking

Windowing

Radix-4
 FFT

Mel-frequency
 Wrapping

 Cepstral
Coefficients

MFCC’s

Speaker Verification in JAVA October 18, 2001 15

3.3.1 Frame Blocking

The first step of the feature extraction is to frame the speech into frames of
approximately 30 msec (30 msec at Fs = 8000Hz gives 240 samples).

FIGURE 5. Speech frame with 240 samples i.e. 30 msec at Fs = 8000Hz

To be able to extract as much features as possible from a speech sample, the
technique of overlapping frames is used [7]. The speech is blocked into
frames of N samples (N = 240 in our case). With a overlapping of 50% one
will get M number of frames out of a speech sample consisting of S sam-
ples:

Number of frames from a speech sample with 50% overlapping (EQ 1)

NoOfFrames
2 SampleLength×

FrameLength
--- 1–=

20 40 60 80 100 120 140 160 180 200 220 240

−500

−400

−300

−200

−100

0

100

200

300

400

Sample

S
p

e
e

ch
 A

m
p

lit
u

d
e

240 sample speech frame

Speaker Verification in JAVA October 18, 2001 16

3.3.2 Windowing

The next step in the processing is to window each individual frame so as to
minimize the signal discontinuity at the beginning and end of each frame.
The concept here is to minimize the spectral distortion by using the win-
dow to taper the signal to zero at the beginning and end of each frame. A
typical window utilized for speaker verification is the Hamming window
[8]. The equation for a Hamming window is as follows:

Hamming window equation (EQ 2)

This will be applied by:

Frame smoothing or windowing (EQ 3)

3.3.3 Fast Four ier Transform (FFT)

The next step is to apply a Fourier Transform on the windowed speech
frame. A Radix-4 Fast Fourier Transform is utilized, converting each frame
from the time domain into the frequency domain. The FFT is a fast algo-
rithm to implement the Discrete Fourier Transform (DFT). The Fourier
Transform is defined as:

Definition of the Fourier Transform (EQ 4)

The Fast Fourier Transform and the Radix-4 algorithm is further described
in [9]. To get a better display of the Fourier Transform, the process of zero
padding is applied. It is important to note that zero padding does not pro-
vide any additional information about the spectrum Y(w) of the sequence
{x(n)} [7].

w n() 0.54 0.46
2πn
N 1–
------------- 

 cos–= 0 n N 1–≤ ≤

y n() x n() w n()×= 0 n N 1–≤ ≤

Y ω() y t()e jωt–

∞–

∞

∫=

Speaker Verification in JAVA October 18, 2001 17

FIGURE 6. Zeropadding of speech frame

FIGURE 7. Radix-4 FFT of a zero padded speech frame

100 200 300 400 500 600 700 800 900 1000

−500

−400

−300

−200

−100

0

100

200

300

400

Sample

Sp
ee

ch
 A

m
pl

itu
de

240 sample frame + Zeros = 1024 samples, i.e. Zeropadding

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

FFT of zeropadded speech frame. Fs = 8000Hz

Frequency (Hz)

FF
T

Am
pl

itu
de

Speaker Verification in JAVA October 18, 2001 18

To be able to extract the power from the Fourier Transformed speech frame
is calculated.

FIGURE 8. Power Spectrum/Periodogram

The result after this step is often referred to as Power Spectrum or Peri-
odogram.

3.3.4 Mel-frequency Wrapping

As mentioned above, studies have been conducted that show that the
human perception of the frequency contents of sounds for speech signals
does not follow a linear scale. Thus for each tone with an actual frequency,
f, measured in Hz, a subjective pitch is measured on a scale called the mel
scale. The mel-frequency scale is a linear frequency spacing below 1000
Hz and a logarithmic spacing above 1000 Hz. As a reference point, the
pitch of a 1 kHz tone, 40 dB above the perceptual hearing threshold, is
defined as 1000 mels. Therefore we can use the following approximate for-
mula to compute the mels for a given frequency f in Hz [10]:

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

x 10
7 Power Spectrum of speech frame. Fs = 8000Hz

Frequency (Hz)

P
ow

er

Speaker Verification in JAVA October 18, 2001 19

Melfrequency frequency calculation (EQ 5)

Our approach to simulate the ears way of extracting the power from the
speech is to apply a filterbank to the Power Spectrum. This filterbank is
uniformly spaced on the mel scale, has a triangular bandpass frequency
response, and the spacing as well as the bandwidth is determined by a con-
stant mel frequency interval [10]. The number of mel spectrum coeffi-
cients, K, is typically chosen as 20, but will vary a little depending on the
sampling frequency. To be observed is that we are applying these filters in
the frequency domain, therefore we simply multiply those triangle-shape
windows in figure 9 on the Power Spectrum.

FIGURE 9. Mel frequency spaced filterbanks

mel f() 2595 1
f

700
---------+ 

 
10

log×=

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mel spaced filterbanks

Frequency (Hz)

G
a

in

Speaker Verification in JAVA October 18, 2001 20

3.3.5 Cepstral Coefficients

After this, the power of the triangular filter has to been summarized, and
the log value of these sums are taken (this to compress the sum). The next
step is to convert the log mel spectrum back to time. The result is called the
mel frequency cepstral coefficients (MFCC). The cepstral representation of
the speech spectrum provides a good representation of the local spectral
properties of the signal for the given frame analysis [8]. Because the mel
spectrum coefficients are real numbers, we can convert them to the time
domain using the Discrete Cosine Transform (DCT):

MFCC calculation (EQ 6)

We will discard the first component from the DCT calculation, since the
first component only represent and reflects the average log energy of the
speech frame[6].

3.3.6 Summary

By applying the above described procedure for each speech frame a set of
mel-frequency cepstral coefficients are computed. This set of coefficients is
called an acoustic vector. This data now needs to be “compressed” . By
compressing the acoustic vector, we will optimize the verification process.
This is described below.

mfcc i() 1
Nfi l ters
-------------------- mfb l() i l

1
2
---– 

  π
Nfi l ters
--------------------× 

 cos

l 1=

Nfi l ters

∑=

i 1 … Nfi l ters, ,=

Speaker Verification in JAVA October 18, 2001 21

3.4 Feature Matching

3.4.1 Introduction

Our speaker verification system, and the problems with feature matching,
is actually a part of a much broader topic in scientific engineering, the sub-
ject of pattern recognition. The main goal with pattern recognition is to
achieve a classification of objects of interest into one of a number of cate-
gories or classes. The objects of interest are generically called patterns and
in our case they are sequences of acoustic vectors that are extracted from an
input speech using the techniques described in the previous sections. Since
the classification procedure in our case is applied on extracted features, it
can also be referred to as feature matching.

Their is a different set of feature matching techniques used in speaker veri-
fication; Dynamic Time Warping (DTW), Hidden Markov Modeling
(HMM), and Vector Quantization (VQ).

3.4.2 Cluster ing the Training Vectors

We are applying the Vector Quantization technique, since the VQ technique
is a technique shown to be effective and has a high accuracy [14]. VQ is a
process of mapping vectors from a large vector space to a finite number of
regions in that space. Each region is called a cluster and can be represented
by its center called a codebook entry or centroid. A full collection of code-
book entries are called a codebook.

After the training process the acoustic vectors extracted from input speech
of a speaker provide a set of training vectors. As described above, the next
important step is to build a speaker-specific VQ codebook for this speaker
using those training vectors. There is a well-know algorithm, namely the
LBG algorithm [11], for clustering a set of L training vectors into a set of
M codebook vectors. The algorithm is formally implemented by the fol-
lowing recursive procedure:

1) Design a 1-vector codebook; this is the centroid of the entire set of train-
ing vectors.

2) Double the size of the codebook by splitting each current codebook until
you have reached the codebook size you were after following the rule,
more entries safer but also slower system.

After making every splitting of the codebook, a nearest neighbor search has
to be performed for each training vector. This is achieved by, for every
training vector calculating the Euclidean distance between the codebook
entry and the training vector. The vector with the smallest Euclidean dis-
tance is assigned with that vector. After this, the entry also called the cen-

Speaker Verification in JAVA October 18, 2001 22

troid, has to be updated. There are different ways of doing this. The
approach used in the current system is to ten times update the centroid and
recalculate the nearest neighbor. Another approach is to continue the calcu-
lation until the centroids does not move more than a predefined max dis-
tance. The figure below shows, in a flow diagram, the detailed steps of the
LBG algorithm.

Euclidean distance (EQ 7)

FIGURE 10. Flowchart of the LBG algorithm (derived from [11])

Dist k() min0 j NEntr ies 1–≤ ≤ Xi k() Sj k()–

k 0=

Entr ies

∑
i 0=

NFrames 1–

∑=

Find Centroid

Split each centroid

m=2*m

Cluster Vectors

Find Centroid

Calculate distortion (D)

((D’-D)/D) < d
no yes

D’=D

yes no
m < M Stop

Speaker Verification in JAVA October 18, 2001 23

FIGURE 11. MFCC’s and 32 entries codebook in two dimensions.

2.5 3 3.5
−2

−1

0

1

2

3

Dimension 1

D
im

e
n

s
io

n
 2

MFCCs + Codebook entry 1

MFCCs
Codebook entry 1

2.5 3 3.5
−2

−1

0

1

2

3

Dimension 1

D
im

e
n

s
io

n
 2

MFCCs + Codebook entry 2

MFCCs
Codebook entry 2

2.5 3 3.5
−2

−1

0

1

2

3

Dimension 1

D
im

e
n

s
io

n
 2

MFCCs + Codebook entry 4

MFCCs
Codebook entry 4

2.5 3 3.5
−2

−1

0

1

2

3

Dimension 1

D
im

e
n

s
io

n
 2

MFCCs + Codebook entry 8

MFCCs
Codebook entry 8

2.5 3 3.5
−2

−1

0

1

2

3

Dimension 1

D
im

e
n

s
io

n
 2

MFCCs + Codebook entry 16

MFCCs
Codebook entry 16

2.5 3 3.5
−2

−1

0

1

2

3

Dimension 1

D
im

e
n

s
io

n
 2

MFCCs + Codebook entry 32

MFCCs
Codebook entry 32

Speaker Verification in JAVA October 18, 2001 24

3.5 Ver ification Par t

In the verification part, the distance from a verification speech vector that
has gone throw the feature extraction described above is compared with the
codebook for the claimed speaker (see figure 2). The distance between the
closest verification speech feature vector and an entry of the codebook is
called a VQ-distortion.

3.5.1 Threshold

For a speaker recognition system, the recognition feature vectors are com-
pared with all users codebooks for which the system is trained for, and the
Euclidean distance is computed. The user codebook that returns the small-
est distance is said to be the user. In a speaker verification system, as
described in figure two, the user also has to enter his/her user ID together
with the speech utterance. In this system, only the distance between the
claimed users codebook and the verification feature vectors is calculated.
But this is not all. In difference from the recognition system, it is not
enough to only take the user with the smallest distance, here we also will
calculate a ratio, that is compared with a preset threshold. If the ratio is less
than the threshold, the user is said to be a true speaker, otherwise the user is
said to be a false speaker or imposter.

3.5.2 Cohor t Speakers

To be able to calculate a ratio, in our system we are using the concept of
cohort speakers. In our system we are using ten cohort speakers, and for
each of the cohort speakers a codebook is calculated. These codebooks are
in the verification part utilized for calculating the ratio. The same proce-
dure as described above, with calculating the distance between the claimed
speaker and all of the cohort codebooks is completed and the mean value is
calculated out of the ten cohort speakers. The ratio then is calculated using
the following experimentally derived formula:

Ratio calculation (EQ 8)

Ratio
Eucl idDistclaimant

2

1
Ncohort
----------------- Eucl idDistimposter i()

i 1=

Ncohor t

∑×

--

 
 
 
 
 
 
 
  4

=

Speaker Verification in JAVA October 18, 2001 25

4.0 Implementation in JAVA

After deriving the concept of a Vector Quantization speaker verification
system using Mel Frequency Cepstral Coefficients, the next step is to
implement the system in Java. For the development of the software,
Java2TM version 1.3 was utilized.

4.1 Speech Data

Firstly, according to figure 2, the user is asked to type in a username.
Everything that has to do with this speaker will utilize the username. Sec-
ondly the speech data has to be recorded. There are some hardware con-
strains for our system. A soundcard has to be installed on the computer,
with a pair of speakers and a microphone attached.

A stream from the soundcard’s microphone port is opened, and firstly the
background noise is recorded. For two seconds the background noise is
recorded and the power of this data is calculated. After this, the real
speaker data is recorded for approximately 6 seconds, and the frameing of
the data earlier described, is done. The power of these frames is calculated
and if the power is less than 1.5 times the background noise power, the
frame is discarded.

A good rule of thumb is to record approximately ten times as many speech
frames as you want to have entries in your codebook for the training phase,
and five times as many speech frames as entries in your codebook for the
verification phase. In our system a codebook holding 32 entries is utilized,
hence 320 speech frames are recorded for the training phase and 160
speech frames for the verification phase.

The speech is recorded at a sampling rate of 8000 Hz, using 16 - bits reso-
lution.

4.2 Speech Processing

Every speech frame has to go through the above described steps of speech
processing, windowing, FFT, Mel-Frequency Wrapping, and MFCC calcu-
lation. To achieve some sort of normalization of the MFCC's, a weighting
array is applied to the MFCC feature vectors. This has been showed to
improve the performance [12]. The figure below shows a unnormalized
mean vector of MFCC’s and the normalization vector. In our system we are
using 18 mel frequency cepstral coefficients.

Speaker Verification in JAVA October 18, 2001 26

FIGURE 12. Mean MFCC array and Cepstral Weight coefficients (MFCC’s * 10)

When this is completed, to obtain a fast system, only 10% of the frames are
saved for later comparison, this one by using the LBG algorithm described
above.

For the verification process of the implementation in Java, the user is asked
to type in the username that he/she used when training the system. If the
user types in an incorrect username, he will be asked to try again. The user
is asked to speak for approximately 4 seconds. During this process 160
speech frames are stored for verification, and the ratio is calculated. If the
user is the correct user, he will be given a OK otherwise the user is declined
access.

2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

50

MFCC coeff. nr / Cepstral Weight nr.

W
ei

gh
t g

ai
n

Mean MFCC array and Cepstral Weight coeff.

Cepstral Weight coeff.
Mean MFCC array

Speaker Verification in JAVA October 18, 2001 27

4.3 Simulation and Evaluation

Before the system can be utilized, the algorithm has to be simulated and the
system be evaluated. For the simulation and evaluation, the speech database
TIMIT is used.

4.3.1 Tests on TIMIT

The TIMIT speech database is a result of joint effort from several Ameri-
can Institutes, where among Massachusetts Institute of Technology (MIT),
Stanford Research Institute (SRI), and Texas Instruments (TI) can be
found. The corpus speaker distribution found in TIMIT contains of a total
of 6300 sentences, 10 sentences spoken by each of 630 speakers from 8
major dialect regions of the United States [5]. TIMIT is recorded under a
very good surrounding with a high signal to noise ratio (SNR). The record-
ing of TIMIT is made on with a 16000Hz sampling frequency, 16 - bits res-
olution. The Signal Processing Laboratory has access to a down sampled to
8000Hz, bandpass filtered noise version of this database, called NTIMIT8.
In the simulation and evaluation of the Java algorithms 100 persons were
used randomly selected from 3 different areas. The selection of female and
male utterances is 50% - 50%.

4.3.2 Error rate

The performance of a speaker verification system [13] is measured in terms
of false acceptance rate (FA%) and false rejection rate (FR%):

False Acceptance, False Rejections (EQ 9)

Where IA is the number of imposter classified as true speakers, IT is the
total number of speakers, CR is the number of true speakers classified as
imposters, CT is the total number of speakers. To calculate the total error of
a verification system, TE, the false acceptance rate is added to the false
rejection rate giving:

Total error (EQ 10)

FA

IA

IT
---- 

  100×=

FR

CA

CT
------ 

  100×=

TE FA FR+=

Speaker Verification in JAVA October 18, 2001 28

The following picture shows the ratio calculation of our system.

FIGURE 13. Threshold and error rate plot from NTIMIT8

The figure shows on four percent total error, zero percent false acceptance
and four percent false rejection.

The number of entries in the codebook, and under what conditions the
speech was recorded has a great part in the total error result. The table
below shows an approximation of the error rate when using different num-
ber of entries in the codebook [14].

TABLE 1. Total Er ror Rate depending on Codebook Entr ies

Number of Codebook Entr ies Speaker Ver ification Rate (%)

32 96.0

64 97.7

128 97.9

256 98.1

512 98.2

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 10

22 Threshold level, speech from NTIMIT8

Speaker nr

R
at

io

Imposter Speaker
True Speaker
Threshold level

Speaker Verification in JAVA October 18, 2001 29

5.0 Parallel Por t Extension

For demonstration purposes and for addressing the problems with access-
ing hardware through Java, a parallel port module was constructed.

5.1 JAVA and Hardware accessibility

As mentioned earlier, to access any hardware from a web browser based
applet, is a big “no no” , since this should become a big security problem.
Due to this fact, our software is an application. When dealing with applica-
tions, the same hardware constrains are not present. Even when dealing
with an application there are many problems present. In the standard ver-
sion of Java 2, there is not any possibility to access the ports of the com-
puter, the parallel port and the serial port. SUN has constructed a platform
dependent toolkit for this access, destroying the platform portability, but
this is the only way of accessing the ports [15].

Since we are in need of accessing the sound card from our “ live” system,
there are also platform dependent problems, hence our software is devel-
oped under Microsoft Windows 98, will also run under the other present
versions of Microsoft Windows.

To note though is that all the algorithms and test programs are platform
independent and can easily be executed under both Microsoft Windows and
Linux.

5.2 Hardware module

For demonstration purpose, a hardware module was constructed. This to
address the earlier mentioned problems with accessing the hardware
through Java and for making it easier when demonstrating the software for
the audience.

The hardware module is connected to the parallel port of a PC and will
show the decision of the verification process. If the result is a true speaker,
four green LED’s will be turned on, for an imposter, four red LED’s will
turn on.

Connection diagram can be found in the figures below.

Speaker Verification in JAVA October 18, 2001 30

FIGURE 14. Connection diagram

25 24 23 22 21 20 19 18 17 16 15 14

13 12 11 12 10 9 8 7 6 5 4 3 2 1

11, 17-25

Parallel
port
connection

R = 10kohm

D0 D1 D2 D3 D4 D5 D6 D7

D7 = 9
D6 = 8
D5 = 7
D4 = 6
D3 = 5
D2 = 4
D1 = 3
D0 = 2

Speaker Verification in JAVA October 18, 2001 31

6.0 Conclusion

A speaker verification application has been developed and implemented
using Matlab and Java. Since Java is said to be platform independent, some
experiments has been conducted that has showed this is not always the
case. As soon as you would like to access the hardware through Java you
will face problems that will make your software to become platform depen-
dent.

It is interesting to note that all the algorithm developed for the speaker ver-
ification system is platform independent, except for those parts accessing
the sound card of the users computer, and can easily be executed under
both Microsoft Windows and Linux.

Java is a very general tool and the support of porting the software across
different computer platforms and networks can be very interesting if an
author of a publication can offer the reader to conduct into the research by
extending the testing of the algorithms or to participate in the solution of
difficult problems by becoming part of a virtual supercomputer.

Testing, simulation and verification of the speaker verification program
show a total error rate of four percent.

7.0 Ideas for fur ther studies

A new and very interesting method of feature extraction has been devel-
oped at the Signal Processing Laboratory, Griffith University. The so called
MACV’s [16]. MACV stands for Maximum Autocorrelation Values. Stud-
ies has showed that verification system employing both MFCC and MACV
features has better performance than systems using MFCC’s only.

Speaker Verification in JAVA October 18, 2001 32

8.0 References

[1] Holzner, S., “Java Black Book”, Coriolis Group, ISBN 1588800970

[2] Digital, “Writing Portable Applications”, http://wint.decsy.ru/alphaservers/
digital/v0000972.htm, (Acc 2001-10-10)

[3] Rabiner, L., Juang, B.H., “Fundamentals of Speech Recognition” , Prentice-
Hall Inc., 1993

[4] Atal, B.S., “Automatic recognition of speakers from their voices”, Proc. IEEE,
Vol. 64, No. 4, pp. 460-475, April 1976.

[5] The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus, “TIMIT” ,
Massachusetts Institute of Technology, Stanford Research Institute and Texas
Instruments, 1990

[6] Young, S. et al. “The HTK Book” , Version 3.0, July 2001

[7] Proakis, J.G, Manolakis, D.G, “DSP, principles, algorithms, and applications”,
Prentice-Hall Inc. 1996, ISBN 0 13394289 9

[8] Reynolds, D., “A Gaussian Mixture Model Approach to Text-Independent
Speaker Identification”, MIT, Technical Report 967, 1995

[9] Nilsson, M., “FFT, Realization and Implementation in FPGA”, Master thesis,
Ericsson Microwave Systems AB / Griffith University, 2000 - 2001

[10] Picone J. W., “Signal Modeling Techniques in Speech Recognition”, Proc. of
the IEEE, Vol 81, Nr. 9, September 1993, pp. 1215-1247

[11] Linde, Y., Buzo A., Gray, R. M., “An algorithm for vector quantizer design” ,
IEEE Trans. on Comm., Vol. COM-28, pp. 84-95, Jan. 1980

[12] Soong, F. Rosenberg, A.E., “On the use of Instantaneous and Transitional
Spectral Information in Speaker Recognition” , IEEE Trans. Acoustics, Speech,
and Signal Processing, Vol 36, No. 6, June 1988

[13] Sanderson, C., “Joint Cohort Normalization in a Multi-Feature Speaker Veri-
fication System” , submitted to The 10th IEEE International Conference on Fuzzy
Systems, Melbourne, Australia, 2-5 December 2001

[14] Matsui, T., Furui, S., “Comparison of text-independent speaker recognition
methods using VQ-distortion and discrete/continuous HMMs” , Acou, Speech,
and Signal Processing, 1992. ICASSP-92., Volume: 2 , 1992

[15] SUN, “Java API” , Version 1.3, 2001, http://www.java.sun.com (Acc 2001-
10-10)

[16] Wildermoth, B. R., Paliwal, K. K., “Use of voicing and pitch information for
speaker recognition”, 8'th Australian International Conference on Speech Science
& Technology (SST 2000), Canberra, Australia, 4-7 December 2000

Speaker Verification in JAVA October 18, 2001 33

Appendix A. Java Code, simulation

Speaker Verification in JAVA October 18, 2001 34

Appendix B. Matlab Code, simulation

Speaker Verification in JAVA October 18, 2001 35

Appendix C. Java Code, application

	Speaker Verification in JAVA
	1.0 Introduction
	1.1 Background
	1.2 Task
	1.3 Technical Function

	2.0 JAVA
	2.1 History of JAVA
	2.2 Virtual Machine
	2.3 Applet and Application
	2.4 Platform Portability

	3.0 Speaker Verification and Vector Quantization
	3.1 Speaker Recognition and Speaker Verification
	3.2 Speech Feature Extraction
	3.3 Mel-frequency cepstral coefficients processor
	3.3.1 Frame Blocking
	3.3.2 Windowing
	3.3.3 Fast Fourier Transform (FFT)
	3.3.4 Mel-frequency Wrapping
	3.3.5 Cepstral Coefficients
	3.3.6 Summary

	3.4 Feature Matching
	3.4.1 Introduction
	3.4.2 Clustering the Training Vectors

	3.5 Verification Part
	3.5.1 Threshold
	3.5.2 Cohort Speakers

	4.0 Implementation in JAVA
	4.1 Speech Data
	4.2 Speech Processing
	4.3 Simulation and Evaluation
	4.3.1 Tests on TIMIT
	4.3.2 Error rate

	5.0 Parallel Port Extension
	5.1 JAVA and Hardware accessibility
	5.2 Hardware module

	6.0 Conclusion
	7.0 Ideas for further studies
	8.0 References

